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Abstract - This study presents a highly efficient New Numerical Method (NNM) for the accurate integration of second-
kind Volterra Integro-Differential Equations (VIDEs). The New Numerical Method (NNM) is derived using a block
algorithm based on a generalized linear multistep framework, enabling the construction of high-order schemes with
multiple grid points. Analytical properties of the NNV, including order, error constants, consistency, zero-stability,
convergence, and the region of absolute stability, are rigorously established to ensure reliability and robustness.
Numerical simulations on representative VIDEs demonstrate the method’s superior accuracy and stability compared
to existing techniques such as Adams-Bashforth-Moulton predictor-corrector methods, general linear methods,
trigonometrically fitted schemes, and Haar wavelet methods. The results indicate that the NNM achieves exact or near-
exact solutions across various step sizes, highlighting its potential as a powerful computational tool for solving
complex integro-differential equations in science and engineering applications.

Keywords - Volterra Integro-Differential Equations, New Numerical Method (NNM), Block Algorithm, High-Order
Numerical Integration, Region of Absolute Stability.

1. Introduction

Integral equations are vital in science, engineering, and technology for modeling systems with cumulative
effects, interdependencies, and boundary constraints. They enable the analysis of complex phenomena in physics,
fluid and quantum mechanics, and mechanical and thermal sciences, including stress, strain, and heat conduction
[1, 2]. Their compact mathematical representation enhances both analytical and computational understanding,
underpinning key engineering methods like the Boundary Element Method and applications in electrical
engineering, antenna design, circuit optimization, and computer science for image reconstruction and artificial
intelligence [3-5]. Integral equations are commonly used to solve various problems in mathematical physics. A
standard representation of such an equation is given by the form

ple)=9(&)+ o[ k(e 0)ple)d 0

Where @ is a constant parameter, K(§ ) Z’) is called the kernel of the integral equation, ,9(§) is a function,

and a)(f) and w(§ ) are the limits of integration, which can be constants, variables, or a combination of both. In
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Equation (1), it is evident that the unknown function appears within the integral expression p(§ ); the function to

be determined typically appears both under the integral sign and in many cases, outside of it [6].

This study considers the numerical integration of Volterra Integro-Differential Equations (VIDEs) of the second
kind of the form

P (£)=9(¢)+ o[ K(& 7)p(r)dr @

The study of Volterra Integro-differential equations of the form (2) has gained significant attention due to their
applications in various scientific and engineering fields. Traditional methods for solving VIEs, such as the direct
computation method, Adomian decomposition method, variational iteration method, successive approximations
method, and successive substitutions method, have some setbacks. However, the major setbacks of existing
numerical methods for solving Volterra integral equations are computational inefficiencies when applied to higher-
order Volterra integral equations and difficulties in the implementation of unrealistic series [1-3].

Research on second-kind Volterra Integro-Differential Equations (VIDEs) has gained significant interest
because of their wide-ranging applications in science and engineering. Conventional methods for solving these
equations, such as direct computation, Adomian decomposition, variational iteration, successive approximations,
and successive substitutions, often encounter limitations, including high computational cost for higher-order
problems and practical difficulties in applying series solutions [6, 7].

Recent developments in numerical methods for Volterra Integro-Differential Equations (VIDEs) have focused
on improving accuracy, stability, and computational efficiency. Reference [8] refined the Extended Trapezoidal
Method (ETM) by developing a PECE-mode algorithm that applies higher-order implicit formulations uniformly
to both differential and integral components, addressing mismatched accuracy in earlier methods. Similarly, author
[9] developed a fifth-order multistep block method based on a two-point, three-step Adams—Moulton framework
with Boole’s quadrature, enabling simultaneous computation of multiple solution points and demonstrating a wide
stability region. The study by [10] introduced a continuous multistep approach using shifted Legendre polynomials
with trapezoidal quadrature, while the author [11] applied a third-order General Linear Method combined with
Simpson’s and Lagrange quadrature, deriving coefficients that minimized principal error norms. These
contributions collectively enhance the precision and robustness of numerical schemes for VIDEs.

Other approaches have addressed the behavior and computational costs inherent in traditional quadrature-
based methods. The author [12] developed a Third-Derivative Trigonometrically Fitted Simpson’s Method
(TDTFBSM) with a block-by-block integration strategy, capable of simultaneously approximating multiple solution
points. Building on this, study [13] presented a fifth-order trigonometrically fitted block method (BTFM) using a
multistep collocation approach, ensuring zero-stability, consistency, and convergence.

The Adomian Decomposition Method (ADM), introduced by George Adomian in the 1970s-1990s, is a semi-
analytical technique for solving linear and nonlinear differential equations without linearization or perturbation,
using Adomian polynomials to decompose complex problems into rapidly convergent series [14]. ADM has been
applied to a wide range of problems in physics, engineering, and stochastic systems [15, 16], though it can be
sensitive to initial conditions and computationally intensive for higher-order terms [17, 18]. Complementary
methods include the Variational Iteration Method (VIM), which employs Lagrange multipliers to construct
correction functionals and achieves fast convergence for nonlinear equations [7, 19, 20], and the Direct Computation
Method (DCM), which converts Volterra integral equations into algebraic systems for direct numerical solution [4,
21, 22]. Advances in hybrid techniques, including modified VIM with wavelets, DCM with orthogonal polynomials,
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and transform-based schemes, have improved convergence, accuracy, and applicability, highlighting the evolving
landscape of semi-analytical and numerical methods for efficiently solving complex differential and integral
equations [14, 22, 23].

The studies by reference [2, 24, 25] collectively advance numerical strategies for Volterra Integro-Differential
Equations (VIDEs) by proposing high-accuracy and robust computational frameworks tailored to different problem
structures. Reference [2] develops a versatile variational iteration—collocation method using shifted Chebyshev
polynomials, demonstrating strong convergence and superior accuracy across higher-order VIDEs. Reference [24]
focuses on singularly perturbed first-order VIDEs with integral boundary conditions, introducing a finite difference
scheme that achieves uniform first-order convergence and effectively resolves boundary layer behavior where
classical methods fail. Complementing these approaches, the author [25] applies a sixth-order Runge-Kutta
technique, showing that high-order time-stepping significantly enhances precision and stability in solving general
integro-differential models. Together, these works highlight ongoing progress in developing efficient, stable, and
accurate numerical methods for diverse classes of VIDEs.

In order to overcome the setbacks in existing methods, this study presents a highly efficient New Numerical
Method (NNM) for the accurate integration of second-kind Volterra Integro-Differential Equations (VIDEs. The
new numerical method was derived using the linear block algorithm.

2. Materials and Methods
The New Numerical Method (NNM) was derived using the block algorithm with the help of Proposition 1.

2.1. Proposition 1
The general linear multistep method of the form

1 1
Z“J/’nﬂ' =h”Zﬂj9m; 3)
j=0 j=0

exists only an NNM from every single-step method. The block algorithm of the form
2, (nh) 1 2 1234
n+p T n+ ::___-’___-’0’__’__ i (4)
pngj Z(m ) m=—g g0 eeE
is considered with its higher derivatives of the form,
2-1 7

o ( +o —_ —
oA B b oo

j=0 j=0

lj ()

Where A, ; =¥z, X, o =¥'E and
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2.2. Proof

In order to obtain a new third-derivative numerical scheme with six grid points, equations (4) and (5) are solved

sequentially to derive a polynomial of the form

(6)

B8 1+ B39 5+ B4+ b8

3[
& +£h in the polynomial (6) and the continuous form of NNM are

aup PP PP 5 th

p(&, +mh)

Where 7
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% %, , 5 25,
o, =3-—n+—n",a,=-3+20n-25n°, 0, =1—-—n+—n",
! AL L LA

281 1441 21 , 5 , 107 . 55 , 1375 , 34375 , 40625 , 3125
Bi=- - n+ e ARty Ll Lot L 7 - 7+
1777560000 45360000 | 90720 | 72" Ta32" "216" " eoas | 48384 | 72576 | 20736

31 133 645 , 5 , 11 ., 3 , 125 , 3125 , 3125 , 3125
B.= - n- N+ = — 1) 1] = m+ n -
277560000 22680000 | 3628800 | 1008 ' 864 34 | 1512 ' 24192 | 36288 | 145152
g T8, ST 20 1 47, 7 o W5 65, a5, 355,
° 840000 ' 210000 ' 4g384 | "6 288" 16 384 384 2016 6912
o W6 ST 807 . %5 6 . G5 . S5 . O ITBTS , 15625

- - — — +
17 7560000 9072000 T asz600 T 72" Tam Taz” Teoas” Tassea 7576 | 20736
30647 19121 149993 , 25 , 8 , 3575 , 1375 , 34375 , 78125 , 15625
P2 ="7e50000 " oasoo0 7 3e2se00 7 144" Toea” "6 512" 24192 ' 3eoss ! 20736
5
po a2, 05 1o 5 15, 35, 315, 35,
27840000 5040000 "6 T 16 T2 T Tz’ " 6e8 T eo12
281 1889 1943 , 5 , 1 , 365 , 125 , 3125 , 3125 , 3125
Pa="Z500000 11320000 " " 3628800 7 288" 54" Taae " 76" 2a102” Toor2” 20738 "
H
31 817 1 , 1 ., 1 , 5 , 15 , 6% , 3125 , 315
= —_ +7 —_ [ —_
A 7560000 45360000 g g g g

- t—n + n - n°+
16200 ' 504 < 432 432" 6048 ' 48334 ' 72576 ' 145152

Expand equation (4) to obtain the generalized NNM as

1 (_ % hjz

—hp' +

2 (_ g hJZ

Zhp' " h?

5 p n [

Gl

> P “n+h3 [A30L9 1 + A3119 2 + ASZLgn + A33‘9 1 + A34'9 2 + A35'9 3 + ASGlg 4 + A37'9n+1J
< n—g n+g n+g n+g n+g

o)
5 " +h?

T P, [AM)“}W1 + A“Snl + A8, + A“Sl’Hl +A“‘9n+3 +A45l9n+E +A45l9n+ﬁ +A“19MJ
° 5 5 5 5 5 5

p ”n+h3 [Alo'g 1 + Alllg 2 + Alz'gn + A13l9 1 + A14l9 2 + A15"9 3 + /\16"9 4 + Al?"nglJ
5 g n+ e e n+—

5 5

Azognfg + A21L9n7z + A9 + AZ3‘9n+1 + AML‘;IH+z + AZS.SIn+§ + AZGSn+£ + A27‘9M]
5 5 5 5 5 5

1
P oy=pytohp’+
neg 5

2
P L =py+t_-hp'+
2 5

n
5

n

2!

ihjz

4 ., \5 "

p =Pyt ghpn+7p ,+h® Agod 1 +Agd 5+ Mg+ Ay 1+ Aoy 5+ A8 3+ A8+ A673"41j
5 5 5 5 5 5 5

21
(h)?

2r

3 "
P a=pPt ghp"+ P "+h3[A5°‘9n,£ + A51'9nl + A8, + A53‘9n+1 + AMSn+z + /\559"+§ + 1\55‘9n+£ + A57L9n+1]
5 5 5 5 5 5 5

TN

P =Pt hp',+ P "n+h3[A708n71 + /\7119'%z + A8, + A73.9n+1 + AMSn+g + A7519ng + A76.9n+ﬁ + A7719M]
5 5 5 5 5 5 5

Its higher derivatives are below as

@)

(8)
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. A TR
P 1=p nfgh P n+h2 f[Xuo‘gni + X111'9n73 + X + X113‘9n+1 + X114'9n+g + X115‘9n+§ + X116'9n+£ + X117Lgn+1J
5 5

5 5 5 5

. C20

p z = p n_gh p "+h2 [Xlzognl + Xlzllgniz + X122‘9n + X1239n+£ + X124L9n+z + X1253n+§ + X1253n+i + X127”9ﬂ+1J
, 1

poi=p +5 hp", +h? [Xmo‘g 1t X13119 2t Xyt + Xlaa‘g at X134‘9 2t X135‘9 3t X135‘9 K Xizrha

. 2.,
P . =pt= 5 hp", +h? X140 a1t X141‘9 2t Xigh + X143’-9 I + X144’9 2 + X145’9 2 + X146’9 4 + X8
5

n+

, 3
p p +5 h p +h [X1509 1 + X15119 2 + X152‘9 + X153‘9 1 + X154‘9 2 + X155‘9 3 + X155‘9 4 + X157‘9n+1

. L4
P et P n+gh P r|+h (Xleog 1t X161Lgl s Xie2dh + X163'9 1 + X164'9 .2 + X165'9 3 + X166"9 4 + X167‘9n+1]
5 5 5 "5 5

P'an=p'yth p" +h? [Xuo‘gni + X17119n73 + X728 + X173‘9”+3 + X174‘9n+g + X175‘9n+g + Xua‘gmi + X177‘9n+1] ©)
5 5 5 5

5 5

p"nﬁ =p n+h[ 209 1 +X2119 2+ Xod, +X21319 ot xms 2 +X21519 3 +X2159 K +X217 MJ
p =p n+h[X220 1 +X221.9 ot X0 + Xm& 2 + Xm.g .2 + X2253 2 + X226.9 4 + X2279M]

=p n+h[X230 Gt X231.9 2t X, + X2339 at X2343 2t X2359 Bt Xm& at X237.9n+1]
p =p".+h X240 +X2419 2 + X, +X2439 1+ XZMLQ 2 +X2459 3 +X2469 K +X247.9"+1]
p =p 'n+h£X250 ot X2519 2t X529, + X2539 at X2549 2t X25519 3 + X2563 at X257|9n+1]

“ _p n+h[X260 1 + X261‘9 2 + X262‘9 + X2639 l + X264‘9 2 + X265‘9 3 + X266‘9 4 + X267’9n+1]

p n+1 p +h[ 270 e 1 + )(271"9 2 + X272‘9 + >(273lg 1 +)(274'9 2 +>(275‘9 3 +)(276"9 4 + X277‘9n+1J (10)

Simplify Ar”. =¥ 77 in equation (4) to the unknown coefficients of A in equation (8) as

Similarly, simplify XW o
equations (9) and (10) as

__ 653 __ BB s __5n __ a8 B _ 169
32400000 500625 75600000 1771875 2800000 21875 72576

1501 103 1807 31 351 208 1

Ayp) | 151200000 | (As 3543750 | (Ag) | 453600000 | Au | 1181250 | (Ase) | 5600000 |(Ae) | 1771875 | (A 5376
210967 4594 150137 3194 73683 14408 1885

Ay - || Ay - Ay | Ay - Ag Ag Ay —_—
A 151200000 || 50065 ||, 151200000 | , 59065 | |, 5600000 || o 590625 | | , 48384
1 1249 2 169 » 3301 2 83 % 2403 @ 3232 ” 1915
Aw|_| 302000 ||A2|_| 70875 ||Aw|_| 6480000 | A« _| 13125 Ass|_| 120000 ||Aes|_| 70875 ||Ane|_| 24192
A, B 21431 | Ay, B 307 As, B 635 'A44 B 23 As, 1377 i A 1328 [ A, 4105
A 90720000 | | A, 236250 || A, 3360000 | A, 20250 | | A, | | 1120000 || A, | | 118125 ||A, | | 145152
N 7517 N 313 N 5483 N 21 N 441 N A || 463
1 75600000 % 590625 * 75600000 “© | 590625 % 400000 5| | 590625 % | 24192
Ay) | 143 Ay) | 38 |\Ay) | 7967 [ Ag | 68 Ag) | 13t [(Ag) | 104 | \A, 151
5600000 1771875 453600000 590625 5600000 253125 48384

673 1 149 23 81 2 1

226800000 65625 75600000 1771875 2800000 500625 72516

=¥7E, equation (5) to obtain the unknown coefficients of the higher derivative X in
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7297 16159 17483 649 _ 201 1328 25
1620000 354375 22680000 354375 70000 354375 36288
8563 119 409 52 129 104 5
X110 45360000 X120 50625 Xi30 648 Xia0 354375 Xis0 560000 Xi60 354375 X720 10368
X 302429 X 8467 X 197611 X 7193 X 26619 X 7568 X 2039
111 P 121 131 P 141 - 151 161 171 s
% 15120000 X 236250 X 15120000 X 236250 || 5 560000 X 118125 X 24192
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Xua| _| 4536000 | | Xus|_| 70875 || Xuwa|_| 324000 || Xue|_| 70875 || Xusa|_| 56000 || Xus|_| 70875 || Xia|_| 9072 |
Xi1a 37631 Xips 2 Xisa B 29843 Xias B 23 Xisa 168 Xios 4712 Xi7a 8125
X 9072000 X 2835 X 9072000 X 10125 || x 22400 X 70875 X 72576
X“ 208 X“5 19 X135 9127 X“5 251 X“’s 147 Xl“ 5392 X“ 965
e 118125 126 118125 136 7560000 146 118125 156 20000 166 118125 16 12096
X7 20609 Xy 8 Xigr 13169 Xy 3 Xis7 67 Xie7 104 Xz 3035
45360000 708750 45360000 708750 560000 50625 72576
_ 1201 1 23 23 33 16 7
22680000 50625 708750 354375 280000 354375 2592
_ 5311 1466 4183 2 _ 149 8 5
67200 4725 604800 i 22400 e — 2688
55 o 13 i 13 a5 55
sz zﬁl_—gél Xzzo 77](-)0 Xzao 262;(%) sz % Xzso 22264"%) Xzsu 38 sz zg%gz
Xou ~ 5200 X 2100 Xoa1 57200 Xou 167 Xos1 22400 Xo61 525 Xon 2688
Xon 44797 Xo2 68 Xon 9077 Xos 2100 | | Xos, 4807 X2 181X, 2725
X X o0 | |X o0 || X un 1\ x ong | | X 55 || x >a197
213 | _ | 604800 223 | _ 525 233 | _ 67200 243 | _ E 253 | _ | 22400 263 | _ 664 273 | _ | 24192
XZlA — ﬂ XZZA ﬂ XZSA — 20227 X244 167 X254 ﬂ XZEA 4725 X27A &
Xoss 162782:?0 Xoos 1895060 Xoss 6{?3’;300 Xoss 2100 Xoss 222(?'4090 Xoss @ Xors 2165%8
Xoss 67200 Xz - % Xz 67200 Xoss _ % Xoss 22400 X6 53285 Xors 2688
X217 _ 2999 X227 29 X237 _ 191 XZA? l X257 _ 149 X257 % X277 7345
604300 2100 67200 e 22400 8 24192
13 8 191 3180 13 -— 53
—_— —_— 0 — 4725 —
22400 4725 604800 22400 896

3. Analysis of New Numerical Method (NNM)

These analyses of the basic properties of the New Numerical Method (NNM) are rigorously studied according
to reference [26, 27]. These analyses are order and error constants, consistency, Zero-stability, Convergent, and
region of absolute stability.

3.1. Order and Error Constant of LBA Scheme
Using Corollary 1 and Corollary 2 to obtain the order and error constant of NNM.

3.1.1. Corollary 3.1
The linear operator L[p(&, );h] associated with the local truncation error of the NNM in equation (8) and its

higher derivatives in equations (9) and (10) is given by
Cosh®p%(&, )+ O(hll)v Cosh®p%(&, )+ O(hlo )’ Cosh®p%(&, )+ O(hog)'

3.1.2. Proof
The linear difference operators associated with equations (8) through (10) are given by
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Llp(g)hl=p 1 —p0

n
5

+
ale
=2

X

p—h? (Am.s:wl F AL ARG FALE AL A L+ A+ A17.9MJ
5 5 5 5 5

5

|
Njo e
o
—
™

N g N

=y
N7
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2. "
L[p(égn ); h]: P 2" Fn + Ehp nT pa—h? (Azn'gnii + A21‘9"73 + Apd, + Azalgrnl + A24‘9n+3 + A25'9n+3 + Azslgrni + A2719n+1J
5 5 5 5 5 5

5

N\
ale
=2
——
s
N

|
ulR
=2
X
3
N

Llp(&)hl=p 1 —p0

—h?® [AWQ",& + A31‘9n,3 + A8, + /\33.9n+1 + Agé,&'m3 + A35.9rHE + A36.9Mi + AW&”“J
5 5 5 5 5 5

N\
aln
=
—
~
b

Llp(&)bl=p 2 = pn

|
alN
=
N
s

—h® [A“O‘gni + /\“S‘m3 + A9, + A‘,3(9"+1 + A““Sm% + A‘,5l9n+3 + /\‘,68“i + A47(9,H1)
5 5 5 5 5 5

(Ehjz

3, . 5 "

Llp(&,)ih]= P 3T Pn— —hp', pa—h? [A“‘gﬂ,i + A51‘9n73 + Agp 9, + Aszlgmg + A54l9"+g + Asslgmg + Asslgmi + A57‘9n+1j
5 5 5 5 5 5

5

4 2
4 5 h
Llp(&,)ih]= P57 Pn— —he's pa—h? [Aso‘gn,l + Aaagnig + Agp9y + Aaz‘gmg + AsA‘gmg + Aes‘gmg + Aes‘gmi + As7‘9n+1J
5 5 5 5 5 5 5

L)
Llo(& )h]= Py —pa —hp n_( ) pa—h? [Aw'gnj + A71‘9%; + A8, + A73‘9n+3 + A74'9n+3 + A75'9n+§ + A76‘9n+£ + A7, »1]
: 5 5 5 5 5

(e . I TR
Lp'(&h]=p WP n+§h p",—h? f(X11o‘9n1 + X111‘9n73 + X + X113‘9n+3 + X114‘9n+3 + Xus‘gm; + X116‘9n+ﬂ + X117‘9n+1J
5 5 5 5 5 5 5
. . CL 20
L[p (§n);h]:p L2 P n+gh p'y—h? (XIZO‘Q 1t X121‘9 N X228, + X123‘9 at X124‘9 2t X125‘9 3 + X126‘9 ot X127’9n+1)
5

n+1

Ve . 1
L[p (%tn)'h]:p n+37p 7gh P hZ[X130.9 1 JrX131L9 2 +X132‘9 JrX133‘9 1 + X134L9 2 + X135‘9 3 + X13s‘9 4 + Xia79
5

n+1

. . C2
L[p (é‘n);h]:p n+g_p n_gh P n_h2 (Xuo 1 + X141‘9 2 +X142‘9 + X143‘9 WL +X144‘9 L2 +X145‘9 W3 +X146‘9 WA +X147‘9n+1]
5
. . Co 3
L[p (‘fn);h]:p n+§_p n_gh P n_hz[xlsolg 1 + X151Lg 2 + X152‘9 + X153‘9 R + X154‘9 L2 + X15519 L3 + X15519 L4 + X157‘9 ]
5

. . CAL
L[p (fn );h]:p nﬁfp nfgh P n h [Xiso‘g 1t X161‘9 2 +X162‘9 + X163‘9 L1 JrX164‘9 W2 + X165‘9 Rl +X166'9 L4 +X167.9
5 5

n+l
5

L[p'(cfn ); h]= pln+1_p'n_h p“n -h? [le"qnl + X171‘9n73 + X17219n + X173‘9M1 + X174‘gn+g + X175'9M§ + Xl?sgwﬁ + X177‘9n+1j
5 5 5 5 5 5

n+l

L[p”(fn )3 h]: p”n}*p”n*h[xzw‘gnj + X211‘9n73 + Xordh + X213‘9M3 + X214‘9Mg + X215‘9n+§ + X21s‘9n+5 + X178 J
5 5 5 5 5 5
L[p”(fn ); h]: p”nig_p”n_h[xzzo‘gni + X221‘9n7£ + Xoopdh + Xzzs‘gmg + X224‘9n+g + Xzzs‘gmg + Xzzs‘gmg + X227‘9n+1]
5 5 5 5 5 5 5
L[p"(fn ); h]: pnmg_P“n_h(Xzso‘gnl + Xzsfgnj + Xogph + Xzss‘gml + X234'9n+g + Xzss‘gmg + Xzse‘gmi + X237‘9n+1]
5 5 5 5 5 5 5
L[P”(‘fn ); h]: pumg_p”n_h[xzmgni + X241‘9n73 + Xoith + X243'9n+3 + X244'9n+g + Xz45‘9n+§ + X245‘9n+i + X247‘9n+1]
5 5 5 5 5 5 5
n+1

L[p"({fn ); h]: ,D”Mé*/?”n*h Xzso‘gni + X251l9"i + X2 + Xzaalgmi + X254l9"+g + Xzsslgmg + Xz5s‘9n+ﬁ + X579,
5 5 5 5 5 5 5

L[p”(én ); h] = p”rHiip”nih[XZGO‘gni} + XZGl‘gniz + X262‘9n + X263L9n+3 + X264L9n+z + X265‘9n+3 + X266l9n+ﬁ + X267‘9n+1J
5 5 5 5 5 5 5

L[p”(gn) h] p n+1 p n h[ 270'9"71 + X271'9n7g + X272‘9r| + X273'9n+1 + X274'9n+£ + X275‘9n+§ + X276‘9n+£ + X277'9n+1]
5 5 5 5 5 5

(11)

(12)

(13)
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3.1.3. Corollary 2
The local truncation error of (8) through (10) is assumed p(§ ) to be sufficiently differentiable, and expanding

equations (11) through (13) using a Taylor series about &, to obtain
L ,[p(& ) h]=(-5.0968x107) L ,[p(& ) h]= (- 2.3806x10™) L, [p(¢, ) ] = (- 2.9455x102)
Lip(gn ) h]=(-1.9538x10™) L, [ps(.fn ) h]=(-4.4883x10™) L, [ps(fn ):h]=(~8.4586x10™)
, ;[p(é‘n );h]=(~1.3308x10) 5 5
1[p (&) h]=(0.2176x107") L ,[p" (£, ) h]=(-9.3009x107) L, [p' (&, ) ] = (- 4.7845x10™)

5

Lg[p (&) h]=(-1.0384x10™) Ly[p" (&) h]= (~1.6800x107°) L, [p" (&, ) h] = (~1.8782x107*),

5 5

Llp'(& ) h]=(-4.8501x10™)

L 1[p"(§n); h]=(-1.0296x10) L ,[p""(£,);h]=(3.7610x10°) L, [p""(&, ) h] = (- 4.5616x10)
L [p (&) h]=(~1.0384x10™) LE[;"(C;); h]=(~5.6000x10) S[p '(£,):h]= (- 4.6956x10°)

5 5

£ ) h]=(-4.3210x10)

3.1.4. Proof
Expanding equations (11) through (13) using Corollary 2 and collecting the like terms to obtain

L ,[p(&,)h]=(-5.0068x102)Cosh™p%(&, )+ 0(n*2) L ,[p(&, kh] = (- 2.3806x107 |Cysh™p%%(, ) + 0(h*)
Lip(gn Jh] = (- 294551072 )C,,h® (£, )+ 0(h*), Lz[;(gn Jh] = (~1.9538x10)C ;h%p%(&, )+ O(h'),
LZ [p(&,)h] = (- 4.4883x10 1 )C,h®p%(&, )+ O(h™), L: [p(£,)h] = (-8.4586 %101 |Cosh®p™(&, )+ O(ht)
Lf[p(én Jh]= (-1.3308x107° oo p (£, )+ 0", 5

1Lo( hh]=(0.2176x10 o p%(&, )+ () L ,[p" (&, ) 1] = (-9.3009x10 )5 % (£, )+ 01,

L[p( );h]= (- 4.7845x10 1 0% (&, )+ 0(h'°) Ls[p'( ) h] = (~1.0884x10°)Cgh®p%(¢, )+ 0(*),

LELo'(gn)h]=( 1.6800x10™° Cogh®p™(£, )+ 0(n*°), L [p( )i h] = (-1.8782x1071)c,6h™p% (&, )+ O(h)
L;[p'(fn Jh]= (- 4.8501x 107 Jc % (&, )+ 0(h'°) 5

L, [p" (&) h]=(-1.0296x10 Cosh®™ (&, ) +0(n*) L ,[o" (&, ) h] = (3.7610x10° ), o™ (&, )+ 0fn°?)
Lip (& ) h] = (-4.5616x 10 )C % 0% (£, )+ 0(h°), Lg[; (£ ) h] = (-1.0384x107°)C,4h® p%%(&, )+ 0(h®),
Ll (e
Lo (6 b= (432106100, 7(e )+ o)

5
(-5.6000x107°)Cysh™p%%(£, )+ 0(h™) L, [ (£, ) ] = (- 4.6956x 10727 ), 4% p™(&, )+ O(h)

5
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3.2. Consistency of NNM
3.2.1. Definition 3
Given the NNM, the first and second characteristic polynomials are defined as,

l .
p(z)=> a;2’ (14)
=0

l .
o(z)=> B2’ (15)
=0

Where Z is the principal root, @; # 0 and (0(0 + B, )2 # 0. The NNM is said to be consistent if it satisfies the

following conditions;
i. theorder p>1,
ii. Zl:a i = 0, and
j=0
iii.  p(1)=0o()

According to definition 3, an LBA is consistent since it is of uniform order eight. Therefore, the LBA satisfies
this condition and is deemed consistent.

3.3. Zero Stability of NNM
3.3.1. Definition 4
A NNM Scheme is said to be Zero-stable for any well-behaved problems, provided that

i.  Allroots of p(l’) lies in the unit disk,

rj<1

ii.  Any roots on the unit circle Qr| < 1) are simple.

Hence,

(U) 91674240u-1068480u? +4689496u° +46746u* +26397u°

- (16)
58060800-14515200u +604800u” +151200u° -15120u* -630u® +135u°

Therefore, equation (16) equal to zero and solving for U gives u =1, hence the NNM scheme is zero-stable.

3.4. Convergence of NNM
By Dahlquist's theorem, the necessary and sufficient conditions for NNM to be convergent are that it must be
consistent and zero-stable. Therefore, the NNM is convergent, since it is consistent and zero-stable.

3.5. Region of Absolute Stability (RAS) of NNM

To determine the regions of absolute stability of NNM, a method that requires neither the computation of roots
of a polynomial nor the solving of simultaneous inequalities was adopted. This method is called the Boundary
Locus Method (BLM). The boundary locus method was used to obtain the stability polynomial of NNM as

10
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V1
41343750000 200037600000000 413437500(1) 275625000(1)
5415902043 6 893657 2\ s 611966338171 6 485227 2 )a
o+ 7' |h>+ o - 7' |h

( )Z[_ 3151 ;10411663 nsjh7+[ 5358324793 ; 16453 ”7jh6
17)

6001128000000000 74418750000 2400451200000000° 2205000000
(11944063 s 1577 ﬂ7]h3+(_ 13697507 , 520391 ”7)h2+( 3 , 3 7]h_ . 4

846720000(1)” 1323000000 483840000ﬂ 17640000

Using the stability polynomial in equation (17) to obtain the RAS of NNM as presented in Figure 1.

T

Imaginary(u)
o N
T

~_

-9 -8 -7 -6 -5 -a -3 2 -1 o
Real(u)

Fig. 1 Regions of absolute stability of NNM

4. Numerical Integration of New Numerical Method (NNM)
The VIDEs of the second were integrated using NNM to test the efficiency and performance of the NNM.

4.1. Example 1
Consider the Volterra integro-differential equation of the form

3
p'(&)=—[ ple)dz, p(0)=0,0< ¢ <1 (18)
with the exact solution given by

p(&)=cos(é) (19)
Source: [9, 12, 28].

4.2. Example 2
Consider the Volterra integro-differential equation of the form

1+j )z, p(0)=0,0<&E<1 20)

with the exact solution given by

11
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p(&)=sinh(£) 1)
Source: [11, 12]

4.3. Example 3
Consider the Volterra integro-differential equation of the form

[} cos( - 2Mpr(£)dz = 2sin(). p(0)= p'(0)=0,0< £ <1 22)

0

with the exact solution given by

pl&)=¢ (23)
Source: [29]

The following notations were used in the tables and figures.

Acronyms  Meaning
& - Points of Evaluation
ENNM - Error in New Numerical Method
EABM5 - Error in Fifth Order Adams-Bashforth-Moulton Predictor-Corrector Method of [28]
E2P3B - Error in Two Point Three-Step Block Method as in [9]
ETFSM - Error in Trigonometrically Fitted Simpson’s Method of [12]
EGLM - Error in Third Order General Linear Method of [11]
EHWM - Error in the Haar Wavelet Method of [29]
Table 1. Numerical results of example 1
¢ Exact Solution Computed Solution ENNM EABM5 E2P3B
0.025 0.02499739591471233066 0.02499739591471233066 | 0.0000E00 | 2.8951E-07 | 5.7323E-08
0.0125 0.01249967448170978872 0.01249967448170978872 | 0.0000E00 | 3.6127E-08 | 5.5893E-09
0.00625 0.00624995930997530612 0.00624995930997530612 | 0.0000E00 | 4.3953E-09 | 2.2443E-10
0.003125 0.00312499491373946269 0.00312499491373946269 | 0.0000E00 | 5.4213E-10 | 1.3908E-11
0.0015625 0.00156249936421720001 0.00156249936421720001 0.0000E00 | 6.7325E-11 | 8.6930E-13
0.00078125 | 0.00078124992052714272 0.00078124992052714272 | 0.0000E00 | 8.3688E-12 | 5.4179E-14
Table 2. Numerical results of example 2
& Exact Solution Computed Solution ENNM EGLM ETFSM
0.100 0.10016675001984402582 0.10016675001984402583 1.0000E-20 1.4606E-06 3.7864E-12
0.025 0.02500260424804808603 0.02500260424804808603 0.0000E00 1.6319E-08 2.2030E-16
0.010 0.01000016666750000198 0.01000016666750000198 0.0000E00 8.3870E-10 3.5789E-19
0.005 0.00500002083335937502 0.00500002083335937502 0.0000E00 1.7077E-11 8.0866E-18
0.001 0.00100000016666667500 0.00100000016666667500 0.0000E00 7.2935E-13 -
Table 3. Numerical results of example 3
& Exact Solution Computed Solution ENNM EHWM
8 64.00000000000000000000 64.00000000000000000000 0.0000E00 0.0000E00
16 256. 00000000000000000000 256. 00000000000000000000 0.0000E00 | 2.2000E-16

12
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32 1024. 00000000000000000000 1024. 00000000000000000000 0.0000E00 | 4.4000E-16
64 4096. 00000000000000000000 4096. 00000000000000000000 0.0000E00 | 5.5000E-16
128 16384. 00000000000000000000 16384. 00000000000000000000 0.0000E00 | 5.5000E-16
256 65536. 00000000000000000000 65536. 00000000000000000000 0.0000E00 8.8000E-16
512 262144. 00000000000000000000 262144. 00000000000000000000 0.0000E00 | 3.4000E-16
1024 1048576. 00000000000000000000 1048576. 00000000000000000000 0.0000e00 5.5000e-16

{—9— EABM5 —H— E2P3B ENNM {

Jggror Curves of Numerical Methods for Example 1
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Ggrer Curves of Numerical Methods for Example 3
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Fig. 4 Textual curve of Table 3

5. Discussion of Results

The New Numerical Method (NNM) was systematically derived using a block algorithm, guided by the general
linear multistep framework as presented in Proposition 1. Starting from a single-step method, the block algorithm
was applied with higher derivatives to construct an NNM. This approach produced a polynomial formulation that
represents the continuous form of the NNM and its higher derivatives, allowing the unknown coefficients to be
determined through sequential solution of the system of equations derived from the block algorithm. The
derivation ensures that the method captures higher-order behavior of the solution while maintaining a structured
and systematic approach to extending single-step methods into a block-based scheme. The resulting generalized
NNM provides a framework for high-precision numerical integration of ordinary and integro-differential
equations, offering a foundation for further stability and error analysis.

The analytical properties of the NNM were rigorously studied to ensure reliability and accuracy. The order and
error constants were determined using linear difference operators and Taylor series expansions, confirming that
the method achieves uniform order eight. Consistency was verified by evaluating the characteristic polynomials
and confirming the principal root conditions. Zero-stability was established by demonstrating that all roots of the
relevant polynomial lie within the unit disk, with simple roots on the unit circle, thereby satisfying the Dahlquist
criterion for convergence. Consequently, the NNM is both consistent and zero-stable, guaranteeing convergence
for well-behaved problems. Additionally, the region of absolute stability was determined using the Boundary
Locus Method, providing a visual representation of the stability boundaries (Figure 1) as a-stable.

The numerical results presented in Tables 1-3 and depicted in Figures 2-4 demonstrate the superior accuracy
and robustness of the New Numerical Method (NNM) in solving Volterra integro-differential equations. For
Example 1, the NNM achieved exact agreement between the computed and exact solutions at all step sizes, yielding
zero error (ENNM). In contrast, the Fifth-Order Adams-Bashforth-Moulton Predictor-Corrector method (EABMS5)
and the Two-Point Three-Step Block method (E2P3B) exhibited progressively decreasing errors with finer step sizes,
as shown in Table 1. Figure 2 illustrates these trends clearly, with the ENNM curve perfectly, while the alternative

14
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methods demonstrate minor deviations that diminish as the step size decreases. This underscores the method’s
stability and high precision for the class of problems represented by Equation (18).

For Example 2, the NNM similarly produced negligible errors across all evaluation points, effectively
confirming exactness. Comparatively, the Third-Order General Linear Method (EGLM) and the Trigonometrically
Fitted Simpson’s Method (ETFSM) exhibited small but measurable deviations, as detailed in Table 2. Figure 3
highlights the distinct separation between the NNM and the other methods. These observations indicate that the
NNM maintains superior accuracy even in problems with smaller step sizes and illustrate its robustness in handling
integro-differential equations of the form given in Equation (20).

In Example 3, the performance of the NNM remained consistently exact, successfully reproducing solutions
with exponentially increasing magnitudes across all step sizes, as shown in Table 3. The Haar Wavelet Method
(EHWM), while highly accurate, produced minimal non-zero errors. Figure 5 depicts the perfect alignment of the
NNM curve with the EHWM, in contrast to the minute deviations of the EHWM. Collectively, these results across
all three examples validate the NNM high-order convergence, numerical stability, and superior precision relative
to existing methods reported in the literature, confirming its effectiveness for solving Volterra integro-differential
equations over a broad range of step sizes and problem scales.

6. Summary Conclusion

This study developed a New Numerical Method (NNM) for the efficient and accurate solution of second-kind
Volterra Integro-Differential Equations (VIDEs). The NNM was derived using a block algorithm built upon a
generalized linear multistep framework, incorporating higher derivatives and multiple grid points to achieve high-
order accuracy. Analytical investigations confirmed the method’s consistency, zero-stability, convergence, and a
wide region of absolute stability, ensuring its reliability for practical computations. The method was tested on
several representative VIDEs, and its performance was compared with that of existing numerical schemes,
including the Adams-Bashforth-Moulton predictor-corrector method, general linear methods, trigonometrically
fitted schemes, and the Haar wavelet method. Across all examples, the NNM demonstrated superior precision,
often producing exact or near-exact solutions with negligible numerical error. These results highlight the NNM's
robustness, efficiency, and suitability for solving complex integro-differential equations encountered in scientific,
engineering, and applied mathematical contexts.
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