DS Journal of Artificial Intelligence and Robotics Volume 3 Issue 2, 1-25, Apr - Jun 2025 ISSN: 2583-9926 / https://doi.org/10.59232/AIR-V3I2P101

Original Article

# Combining YOLO and Scikit-Learn Improves **Real-World Audience Classification**

## Tri Luu<sup>1</sup>, Thinh Tong<sup>1</sup>, Tuong Dang<sup>1</sup>, Vuong Pham<sup>1</sup>, Minh Phan<sup>1\*</sup>

<sup>1</sup>Sai Gon University, Ho Chi Minh City, Vietnam.

\*minhpn@sgu.edu.vn

Received:02 April 2025; Revised: 04 May 2025; Accepted: 06 June 2025; Published: 30 June 2025;

Abstract - This study addresses the problem of automatic object classification by leveraging the strengths of both deep learning and traditional machine learning. The main goal of this project is to develop a prototype application capable of efficiently and accurately recognizing and classifying objects in images. To tackle this, the YOLOv10 model for object detection was used, then extracted features such as bounding-box size [3] and average color. If an image is of poor quality or YOLOv10 fails to detect any object, this study applies PCA to enhance image quality. These extracted features are then used to train a Random Forest classifier from the scikit-learn library. The performance of the Random Forest classifier is optimized using GridSearchCV [2] and evaluated using StratifiedKFold [5]. The results showed that the YOLO + Random Forest combination system achieved an overall accuracy of 93%, with a higher average Precision and F1-score than using YOLOv10 alone. The combined model significantly improves the ability to classify glass and organic objects, although the number of samples of these two types is limited. The study concluded that the combination of YOLOv10 and Random Forest is an effective approach to building an automated object classification system, taking advantage of the detection speed of deep learning and the characterization-based classification capabilities of traditional machine learning, contributing to intelligent object management.

Keywords - Feature extraction, Image processing, Object classification, Random forest, YOLOv10.

## 1. Introduction

Automatic object classification systems play an increasingly important role in industrial automation, waste management, and intelligent environmental monitoring. Although deep learning models, such as YOLO, have significantly advanced the capabilities of object detection, these approaches still face challenges in accurately classifying objects under difficult conditions such as low-light environments, reflective surfaces, and visually similar items. Meanwhile, traditional machine learning methods, known for their robust feature-based classification abilities, have not been extensively integrated with modern deep-learning frameworks.

This study proposes a novel hybrid approach that integrates YOLOv10—an advanced deep learning model with the Random Forest classifier from the Scikit-learn library. Principal Component Analysis (PCA) is utilized as a supplementary step for image preprocessing to enhance feature visibility in challenging imaging scenarios. The main goal is to combine YOLOv10's real-time detection strengths with Random Forest's feature-based classification capabilities, aiming to significantly improve classification accuracy in practical applications such as automated recycling and waste sorting.

The proposed methodology was thoroughly evaluated on the Trash Detection dataset from Roboflow, which contains six challenging object categories: cardboard, glass, metal, organic, paper, and plastic. The experimental



evaluation demonstrates how the integrated YOLOv10, Random Forest, and PCA pipeline effectively addresses the shortcomings of standalone YOLO, especially in cases of visually challenging objects, resulting in improved accuracy and reliability.

## 2. Review of Literature

#### 2.1. YOLOv10 Model

YOLO (You Only Look Once) is one of the most popular object detection architectures known for its fast and accurate real-time detection capabilities. YOLOv10 is the latest version, building upon improvements from previous versions such as YOLOv4, YOLOv5, and YOLOv7, with optimized network architecture and training algorithms.

The core principle of YOLO is dividing the input image into grid cells, where each cell predicts bounding boxes and class probabilities for objects within that region. YOLOv10 features enhancements like a lighter backbone, feature pyramid networks for multi-scale detection, and improved training methods to boost accuracy and speed.

Advantages of YOLOv10 include:

- High-speed object detection suitable for real-time applications.
- Ability to detect multiple object classes with good accuracy.
- Integration of advanced data augmentation and training techniques.

However, YOLOv10 can struggle with visually similar objects and may have reduced performance under challenging conditions such as low light or blurry images.

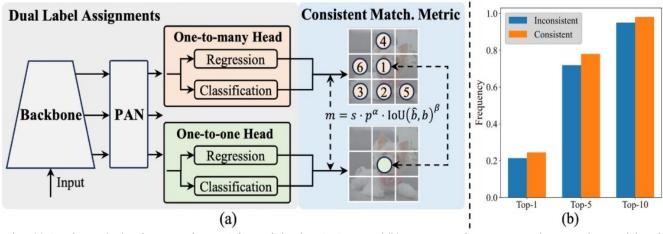



Fig. 1(a) Consistent dual assignments for NMS-free training in YOLOv10, and (b) Frequency of one-to-one assignments in top-1/5/10 of one-to-many results for YOLOv8-S which employs  $\alpha_{02m}$ =0.5 and  $\beta_{02m}$ =6 by default. For consistency,  $\alpha_{020}$ =0.5,  $\beta_{020}$ =6. For consistency,  $\alpha_{020}$ =0.5,  $\beta_{020}$ =6.

#### 2.2. Random Forest Algorithm

Random Forest (RF) is a machine learning algorithm based on constructing an ensemble of decision trees built on randomly selected subsets of data and features. Each tree gives a classification vote, and the final prediction is made by majority voting.

RF works by:

- Building many decision trees from bootstrapped samples of the training data.
- Training each tree on a random subset of features.
- Combining predictions from all trees to reduce overfitting and improve generalization.

Its advantages include:

- Strong classification performance on high-dimensional data without strict assumptions about data distribution.
- Robustness to noise and outliers.
- Ease of tuning and applicability too small to medium datasets.

The downsides include potentially slower prediction times with many trees and reduced interpretability compared to simpler models.

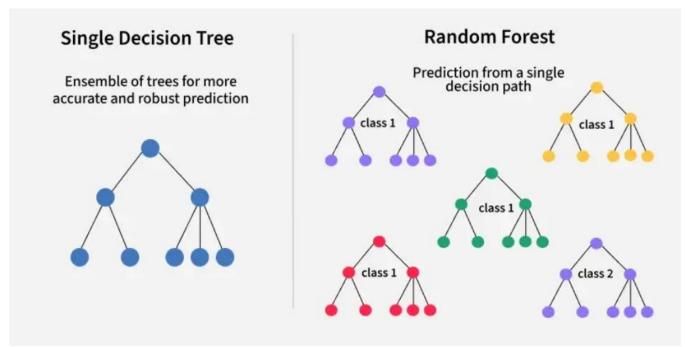



Fig. 2 Comparison between a single decision tree and a random forest ensemble

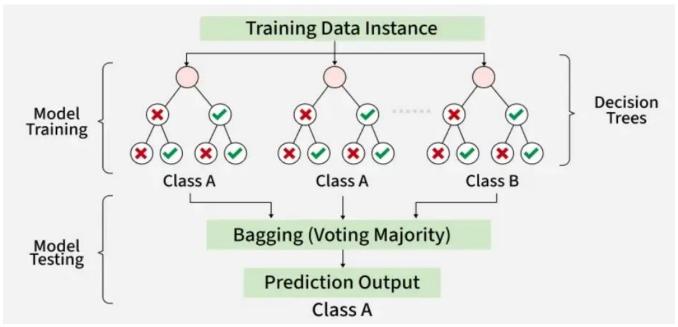



Fig. 3 Random forest training and testing workflow with bagging and majority voting

## 2.3. Principal Component Analysis (PCA)

Principal Component Analysis is a dimensionality reduction technique that transforms original data into a new coordinate system defined by principal components, which capture the directions of maximum variance.

In image processing, PCA is used to:

- Remove noise by filtering out less important components.
- Enhance image quality, especially for blurred or poorly lit images, by reconstructing images from principal components.

## PCA operates by:

- Representing each pixel as a vector in color space.
- Finding new orthogonal axes that capture the most variance.
- Keeping only a few principal components to reduce dimensionality.
- Reconstructing images from these components to smooth and denoise while preserving important structures.

Applying PCA in this study helps improve input image quality, thereby aiding YOLOv10 in better detecting challenging objects.

## 2.4. Justification for Model Combination

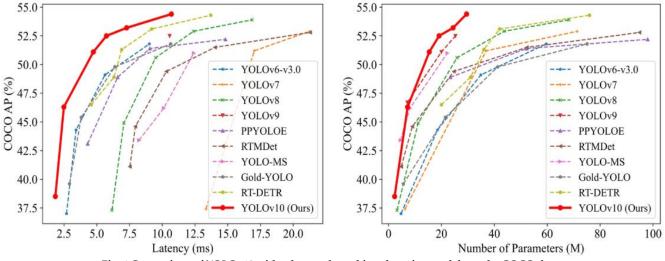



Fig. 4 Comparison of YOLOv10 with other modern object detection models on the COCO dataset

YOLOv10 serves as the primary detection module due to its advanced architecture, which delivers improved accuracy and lower computational cost compared to earlier versions such as YOLOv5 or YOLOv8. However, despite its strong performance, YOLOv10 can still struggle with detecting objects under poor lighting conditions, occlusion, or cluttered backgrounds. To address this limitation, Principal Component Analysis (PCA) is applied as a preprocessing step to enhance image clarity and amplify key visual cues. This helps improve YOLOv10's object detection capabilities in degraded visual environments.

Following the detection phase, additional features are extracted from the detected bounding boxes. These include geometric properties (e.g., box dimensions, aspect ratios), statistical color values (e.g., average RGB), and deep features obtained from intermediate layers of the YOLO model. These combined features provide a richer representation of the object beyond standard detection outputs. A Random Forest classifier is then used to perform a secondary classification step, particularly in cases where the initial detection is uncertain or involves visually

similar categories. This layered design enhances classification reliability without introducing significant computational complexity.

#### 3. Method

#### 3.1. Research Methods

In this project, the research team developed a synchronous research-experiment process, starting with an indepth survey of the YOLOv10 object detection algorithm and popular machine learning methods in the Scikit-learn library to solve the classification problem. In terms of data preparation, the team collected thousands of images from a variety of sources—including actual shots taken at living areas and waste treatment facilities—and then performed pre-processing steps such as size balancing, brightness-contrast adjustment, and noise removal to ensure the consistency and richness of the data set. Next, the YOLOv10 model is fine-tuned on this specialized dataset, ensuring the accurate detection of the bounding boxes of objects with optimal confidence thresholds. From the detection results, the system automatically extracts "rough" features such as area and aspect ratio and analyzes the color histogram in the HSV space to describe the color information. In cases where the image is blurry or contains a lot of noise—such as shadows or low-light conditions—the PCA (Principal Component Analysis) [1] method is applied to filter out random components, thereby shortening the data on the main components and improving the quality of the input signal.

The second classification layer uses the Random Forest algorithm, with hyperparameters optimized via GridSearchCV combined with StratifiedKFold to ensure generalization and avoid overfitting. Evaluation metrics [11], including Accuracy, Precision, Recall, and F1-score, are calculated for each class and macro mean, thereby allowing direct comparison of performance between the native YOLOv10 model, pure Random Forest, and the combined method. Finally, the study proposes a "fusion" mechanism between the two prediction streams: prioritizing the output of YOLOv10 when the confidence is high, and switching to using labels from Random Forest in cases of low confidence or when YOLO fails to detect the bounding box [3]. This mechanism exploits the speed and sensitivity advantages of YOLOv10 and the sophisticated discrimination of Random Forest, resulting in overall classification results that are superior to individual methods.

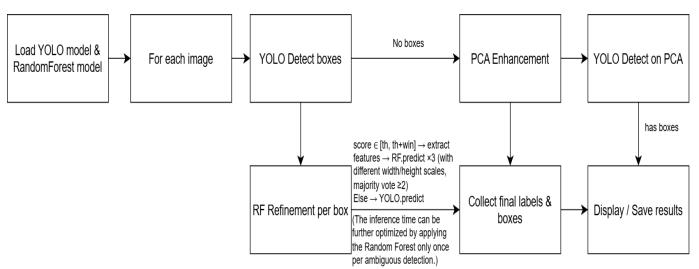



Fig. 5 YOLO + Random Forest + PCA system stream processing

#### 3.2. System Operation Process

## 3.2.1. Feature Extraction from Images

The main purpose of this procedure is to use the YOLOv10 model trained in the datasets file that is being trained for Random Forest to extract the deep features [13] required for training the Random Forest classifier.

The steps include:

- Running the YOLOv10 model on each image retains only the findings (it is possible to set the reliability beyond the preset threshold (e.g. 0.35) so that the desired data can be limited).
- From the bounding boxes detected, the usual features such as size (width, height) and average color (channels B, G, R) of the image area containing the object can be extracted. In contrast, the deep features can be obtained from the BACKBONE layer of the yolo model.
- Store these features along with the object's label (taken from YOLO's prediction results) and information about the data source (e.g., "train") into a CSV file.
- This process creates a dataset of extracted features, ready to be used in training the Random Forest classifier.

## 3.2.2. Training the Random Forest classifier

The main purpose is to train the Random Forest classifier to classify objects based on the characteristics (size and color) that have been extracted from the image by YOLOv10.

The main steps include:

- Use the signature data and labels that were prepared for the previous step.
- Initialize the Random Forest classifier from the Scikit-learn library.
- Search for optimal parameters for the Random Forest classifier using GridSearchCV and StratifiedKFold to evaluate performance across different datasets. [2]
- Train the best Random Forest classifier with the parameters found. [5]
- Store the trained model for later prediction. [6]

## 3.2.3. Combining Predictions with YOLO and Random Forest

The purpose of this section is to integrate the prediction results from the YOLOv10 model and the Random Forest classifier to achieve the most accurate object recognition results. [3]

The incorporation process is carried out in the following steps:

- Run predictions with YOLOv10: Input images are processed by YOLOv10 to obtain a list of bounding boxes [3], prediction labels, and confidence scores.
- Apply PCA to reduce noise (data dimensionality reduction and inverse-transform), balance the histogram to increase contrast, and re-run the YOLO on the improved image before attempting to run the YOLO again.

#### Prediction Threshold Handling

- If the reliability from YOLO is high (e.g., ≥ 0.6), the prediction label from YOLO will be preferred.
- If the reliability falls within the predefined confidence interval for the RF to join, the system extracts the
  characteristics (size and color,... and deep characteristics) from the bounding box detected by YOLO and uses
  the trained Random Forest classifier to predict the label. This allows Random Forest to compensate for
  uncertain YOLO cases.
- Draw the bounding box and display the result: After the prediction label (from YOLO or Random Forest) is applied, the bounding boxes will be drawn on the image along with the prediction label. The color of the bounding box can be different to distinguish the prediction source (e.g., black for YOLO, green for Random Forest), [3]
- This process combines the fast detection capabilities of YOLOv10 with Random Forest's more detailed characterization-based classification capabilities to improve the overall accuracy of the object classification system, especially in cases where YOLO has low reliability or difficulties. The use of PCA improves the detection of YOLO in unfavorable photo conditions.

Step 1: The conf thresholds for the Random Forest classifier will be limited can participate in to make predictions (During Yolov10 training, the classes where the model is weak can be measured that the Yolo model is weak at, this is very necessary and need to be sure that when YOLO has a conf level above 0.6, the prediction of the correct object will become very good).

| Ta | ble 1. Confusion n | atrix result of t | esting the y | yolov10 mode | el on the test file |
|----|--------------------|-------------------|--------------|--------------|---------------------|
|    |                    |                   |              |              |                     |

| Class        | Precision | Recall | F1-Score | Support |
|--------------|-----------|--------|----------|---------|
| cardboard    | 0.8       | 0.91   | 0.85     | 112     |
| glass        | 0.5       | 0.7    | 0.58     | 10      |
| metal        | 0.35      | 0.75   | 0.48     | 8       |
| organic      | 1         | 1      | 1        | 38      |
| paper        | 0.93      | 0.57   | 0.7      | 76      |
| plastic      | 0.94      | 0.87   | 0.9      | 126     |
| micro avg    | 0.85      | 0.82   | 0.84     | 370     |
| macro avg    | 0.75      | 0.8    | 0.75     | 370     |
| weighted avg | 0.88      | 0.82   | 0.84     | 370     |

- Glass only achieved a precision = 0.50 (a lot of false-positives) despite relatively good recall.
- Metals are even worse: precision = 0.35.
- The other layers (cardboard, organic, paper, plastic) are good enough, so there is no need to turn on RF for them.

```
redicted class 1: total wrong = 7

conf=0.21 -> wrong 1/2 = 50.00% -> actual: 2:1

conf=0.25 -> wrong 1/1 = 100.00% -> actual: 5:1

conf=0.34 -> wrong 1/1 = 100.00% -> actual: 5:1
 conf=0.52 -> wrong 1/1 = 100.00% -> actual:
conf=0.66 -> wrong 1/1 = 100.00% -> actual: 5:1 conf=0.69 -> wrong 1/2 = 50.00% -> actual: 2:1 conf=0.96 -> wrong 1/1 = 100.00% -> actual: 5:1
 --> Conf range [0.21 ~ 0.96] => error rate in range: 21.21%
redicted class 2: total wrong = 13
conf=0.28 -> wrong 1/1 = 100.00% -> actual: 5:1
                                                                                         Predicted class 0: total wrong = 35
                                                                                           conf=0.21 \rightarrow wrong 2/8 = 25.00\% \rightarrow actual: 4:2
conf=0.29 -> wrong 1/3 = 33.33% -> actual: 0:1
conf=0.36 -> wrong 1/1 = 100.00% -> actual: 4:1
                                                                                            conf=0.22 \rightarrow wrong 1/10 = 10.00\% \rightarrow actual: 4:1
 conf=0.40 -> wrong 1/1 = 100.00% -> actual: 5:1
                                                                                            conf=0.23 -> wrong 1/4 = 25.00% -> actual: 4:1
conf=0.41 -> wrong 1/1 = 100.00% -> actual: 5:1
conf=0.54 -> wrong 1/1 = 100.00% -> actual: 0:1
                                                                                            conf=0.24 -> wrong 1/3 = 33.33% -> actual: 4:1
                                                                                            conf=0.26 -> wrong 2/6 = 33.33% -> actual: 4:2
conf=0.55 -> wrong 1/2 = 50.00% -> actual: 5:1
conf=0.56 -> wrong 1/2 = 50.00% -> actual: 4:1
                                                                                           conf=0.27 -> wrong 1/2 = 50.00% -> actual: 4:1
                                                                                           conf=0.28 -> wrong 1/5 = 20.00% -> actual: 4:1
conf=0.57 -> wrong 1/2 = 50.00% -> actual: 5:1
conf=0.59 -> wrong 1/1 = 100.00% -> actual: 0:1
                                                                                            conf=0.33 -> wrong 1/5 = 20.00% -> actual: 4:1
 conf=0.80 -> wrong 1/4 =
                                                                                           conf=0.34 -> wrong 1/2 = 50.00% -> actual: 4:1
conf=0.89 -> wrong 1/3 = 33.33% -> actual: 5:1
conf=0.91 -> wrong 1/1 = 100.00% -> actual: 5:1
                                                                                            conf=0.38 \rightarrow wrong 1/3 = 33.33% \rightarrow actual: 4:1
                                                                                            conf=0.40 -> wrong 1/3 = 33.33% -> actual: 4:1
  -> Conf range [0.28 ~ 0.91] => error rate in range: 25.49%
                                                                                            conf=0.41 -> wrong 1/4 = 25.00% -> actual: 4:1
redicted class 3: total wrong = 1
conf=0.30 -> wrong 1/2 = 50.00% -> actual: 5:1
--> Conf range [0.30 ~ 0.30] => error rate in range: 100.00%
                                                                                            conf=0.45 -> wrong 1/1 = 100.00% -> actual: 4:1
                                                                                            conf=0.52 -> wrong 1/2 = 50.00% -> actual: 4:1
                                                                                            conf=0.58 -> wrong 1/3 = 33.33% -> actual: 4:1
                                                                                            conf=0.60 -> wrong 1/3 = 33.33% -> actual: 4:1
redicted class 4: total wrong =
conf=0.28 -> wrong 1/5 = 20.00% -> actual: 5:1
conf=0.36 -> wrong 1/1 = 100.00% -> actual: 5:1
conf=0.56 -> wrong 1/3 = 33.33% -> actual: 5:1
                                                                                            conf=0.62 \rightarrow wrong 1/3 = 33.33\% \rightarrow actual: 4:1
                                                                                            conf=0.65 -> wrong 1/2 = 50.00% -> actual: 4:1
                                                                                            conf=0.66 -> wrong 2/4 = 50.00% -> actual: 4:2
conf=0.72 -> wrong 1/3 = 33.33% -> actual: 0:1 --> Conf range [0.28 \sim 0.72] => error rate in range: 8.00%
                                                                                            conf=0.72 -> wrong 2/5 = 40.00% -> actual: 4:2
                                                                                            conf=0.74 -> wrong 1/2 = 50.00% -> actual: 4:1
redicted class 5: total wrong = 9
                                                                                            conf=0.76 \rightarrow wrong 1/1 = 100.00\% \rightarrow actual: 4:1
conf=0.23 -> wrong 1/5 = 20.00% -> actual: 0:1 conf=0.30 -> wrong 1/2 = 50.20% -> actual: 1:1
                                                                                            conf=0.78 -> wrong 1/2 = 50.00% -> actual: 4:1
                                                                                            conf=0.79 -> wrong 2/5 = 40.00% -> actual: 4:2
 conf=0.34 -> wrong 1/3 = 33.33%
                                                                                            conf=0.84 -> wrong 1/5 = 20.00% -> actual: 4:1
conf=0.39 -> wrong 1/2 = 50.00% -> actual: 0:1
conf=0.41 -> wrong 1/2 = 50.00% -> actual: 0:1
                                                                                            conf=0.89 -> wrong 1/3 = 33.33% -> actual: 4:1
conf=0.48 -> wrong 1/3 = 33.33% -> actual:
conf=0.48 -> wrong 1/3 = 33.33% -> actual:
                                                                                            conf=0.91 -> wrong 1/6 = 16.67% -> actual: 4:1
                                                                                            conf=0.93 -> wrong 2/4 = 50.00% -> actual: 4:2
                                                              1:1
 conf=0.57 -> wrong
                                    33.33%
                                                                                            conf=0.94 -> wrong 1/7 = 14.29% -> actual: 4:1
 conf=0.80
               \rightarrow wrong 1/3 =
                                    33.33% -> actual:
                                                                                            --> Conf range [0.21 ~ 0.94] => error rate in range: 17.24%
    > Conf range [0.23 ~ 0.80] => error rate in range: 8.74%
```

Fig. 6 YOLOv10 model error rate test result on the test file

- Glass (class 1): F1-score 0.58 → frequent mistakes. ~21% errors within conf [0.21–0.96], so RF can participate in conf from 0.2 to 0.67.
- Metal (class 2): F1-score 0.48 → even less accurate. ~25% errors within conf [0.28–0.91], so RF can participate in conf from 0.2 to 0.6.
- Paper (class 4) and Plastic (class 5): F1-scores ~0.70–0.90, overall error ~8–9% (acceptable).
- Organic (class 3): perfect YOLO (F1-score 1.00). Only ~8–9% errors; class 3 had 1 rare error.

## Why not RF for Classes 0,3,4,5?

Class 0's error (~17%) is lower than glass/metal. Classes 4 & 5 have only ~8–9% errors. Using RF everywhere adds complexity with marginal gain. Class 3 perfect YOLO (F1-score 1.00)

- Step 2: The trained YOLOv10 is used to detect the objects in the image (if detection fails, PCA is applied to enhance detection to rescue the object so that the YOLOv10 can identify the object).
- Step 3: YOLOv10 is used to label objects; if labels belong to weak classes within the proposed RF confidence range, RF is applied. For each object, RF predicts three times with width and height adjusted by factors (0.7, 1, 1.3); if a class appears at least twice, the RF label is used; otherwise, the YOLOv10 label is kept.

When PCA is applied to an image using the apply\_PCA\_enhancement [10] processing method, and only apply it to images where the Yolov10 model does not recognize the object appearing on the image, do not reduce the width × height, but only the "channels". Concrete:

- a) Each pixel is treated as a vector with length =C (number of channels)
- For RGB images, C=3, each pixel is a vector R, G, BR, G, BR, G, B.
- b) PCA actually reduces the "color spectrum"
- Let's aggregate all the pixels into a data matrix of size (h×w) × C.
- PCA takes this matrix and finds the principal components the orientations in the color space that contain the most variance.
- If select n\_components = 2, PCA transfers each vector [R, G, B]  $\rightarrow$  a 2D vector (2 main components), and when performing the inverse transform, PCA uses these 20 components to approximate the original 3D vector.
- c) Inverse transform restores to RGB space
- Even though it only stores 2 components, PCA still remembers the transformation matrix (eigenvectors) to "project back" from 2-dimensional space back to 3-dimensional space.
- The result is a 3-channel image with colors that have been blurred/removed from noise, retaining the main structure. (If PCA is used to keep only one principal component, predictions will mainly rely on the angles and shape of the object.)
- d) Histogram equalization (optional) re-contrast correction for each channel
- After inverse PCA, each channel may lose contrast. Use cv2.equalizeHist to improve contrast, making colors look clearer. [12]

## Example:



Fig. 7 Applying PCA when holding 2 main components



Fig. 8 Applying PCA to hold only 1 main component

```
Function MAIN_PREDICT(image):

# Step 1: Define classes and confidence windows for RF refinement

RF_CLASSES ← {"glass", "metal"}

RF_CONF_WINDOWS ← {

"glass": (0.2, 0.55),

"metal": (0.2, 0.55)

}

# Step 2: Run YOLO detection

detections ← YOLO.DETECTION(image, iou=0.3, conf=GLOBAL_CONF)

If detections are empty, then

image ← APPLY_PCA_ENHANCEMENT(image)

detections ← YOLO.DETECTION(image, iou=0.3, conf=GLOBAL_CONF)

End If

preds ← empty list
```

```
# Step 3: For each detection, optionally refine with RF
  For each det in detections do
    class id, bbox, conf score ← det
    yolo_label \leftarrow LABEL_MAP[class_id]
    If yolo_label ∈ RF_CLASSES AND RF_CONF_WINDOWS[yolo_label].min ≤ conf_score <
RF_CONF_WINDOWS[yolo_label].max then
      votes \leftarrow empty list
      # Generate three scaled ROIs and predict with RF
      For each scale in [0.7, 1.0, 1.3] do
         scaled\_roi \leftarrow CROP\_AND\_RESIZE\_ROI(image, bbox, scale)
         features ← EXTRACT_FEATURES(scaled_roi)
        rf_pred \leftarrow RF_MODEL.PREDICT(features)
         Append rf_pred to votes
      End For
      # Majority voting
      final\_label \leftarrow yolo\_label
      If MAJORITY_COUNT(votes) \geq 2 then
         final_label ← MOST_COMMON(votes)
      End If
    Else
      final_label ← yolo_label
    End If
    Append (bbox, conf_score, yolo_label, final_label) to preds
  End For
  Return preds
End Function
```

## Quick Explanation

#### 1. RF Class Selection

Define the weak classes ("glass" and "metal") and their confidence intervals (0.2 to 0.55) during which the Random Forest should be applied.

#### 2. YOLO Detection with PCA Fallback

Run YOLOv10 on the original image. If no objects are detected, apply a PCA-based enhancement to the image channels and run YOLO again. [1]

#### 3. RF Refinement per Detection

For each YOLO detection whose label is in the weak class set and whose confidence falls within the specified window:

- Crop and resize the region of interest (ROI) at three scales (70%, 100%, and 130%).
- Extract features from each scaled ROI.
- Predict with the Random Forest three times, collecting votes.
- If at least two RF predictions agree, adopt that as the final label; otherwise, retain the original YOLO label.

## 4. Return Predictions

Collect and return all bounding boxes, original scores, YOLO labels, and the final (possibly RF-refined) labels.

## 3.2.4. How to Perform Combined Details

This section describes in detail how the system recognizes objects on still images by combining YOLOv10 and Random Forest, especially in situations where YOLOv10 does not work effectively.

The operation process includes:

- Image pre-processing: The input image is prepared for inclusion in the YOLOv10 model.
- Run YOLOv10 to detect the object.
- Check the detection results of YOLOv10:
- If no object is detected, the system will apply PCA to improve the image quality and try to run YOLOv10 again [1].
- If the results from YOLOv10 are low-reliability and satisfy certain conditions about the degree of overlap between the detected objects and the conditions for the objects that the Yolo model weakly recognizes, as well as the extent to which the confidence granted to Random Forest participates, the system will use the Random Forest classifier to predict labels based on the extracted features. The overlap conditions are considered because Random Forest focuses on the unique characteristics of each subject.
- In other cases, the prediction results from YOLOv10 will be used.
- Displays the final result on the photo, including the bounding box and prediction label.

## 3.3. Steps to Prepare

#### 3.3.1. Extract Features from Photos

The main purpose of this algorithm is to use a YOLO model that has been trained to detect objects in the image and extract important features from those objects. These features will then be used to train the Random Forest classifier.

In this feature extraction step, the desired features can be customized, allowing Random Forest to effectively distinguish objects based on these features.

The featured extract will typically extract the width, height, area\_ratio, aspect\_ratio, and average colors:

- Width, height: used to have a characteristic distinction with specific classes, such as water bottles, the ratio will always be different from that of Cardboard, and to prepare for the combination.
- Area\_ratio and aspect\_ratio are used to minimise instances where the actual objects are in a different location
  than the majority of the objects that have been extracted.

Deep feature extraction [13] can be used directly from the backbone layer of Yolov10 to help optimize object detection tasks (this Yolov10 model should be a trained model of the datasets file itself that will extract features from to train Random Forest).

#### Inputs:

- Original photo I
- Polygon label or YOLO-format label file
- YOLOv10 model path

## Output:

• CSV table containing vector features and labels

## 1. Initialization:

- Load model YOLOv10, split backbone = first layers (layers 0... L\_backbone)
- Setting DEVICE = cuda if else cpu is present

## 2. Read each photo in the folder:

For each file fn in IMAGE DIR:

- Read image img = cv2.imread(fn)
- Read the corresponding label file (polygon or YOLO-format)

#### 3. For each line in the file label:

- Parse line to get (class\_id, polygon) or (class\_id, box)
- Calculating bounding boxes (x, y, w, h) from polygon or YOLO format
- Cut ROI = img[y:y+h, x:x+w]

#### 4. Extract manual features:

- Calculate width = w, height = h
- Calculation area\_ratio = area of the foreground area / (w\*h)
- Calculate aspect\_ratio = w/h
- avg\_b, avg\_g, avg\_r on the foreground

## 5. Extract deep features:

- Resize ROI  $\rightarrow$  (640×640), BGR $\rightarrow$ RGB, convert to C×H×W tensor
- Hook outputs at the end of the 3 layers of the backbone + Detect module
- Forward pass via YOLO, try feature maps
- Global-average pooling per feature map → vector
- Concat all vectors → deep\_vec

#### 6. Record a stream of data:

- features = [manual\_feats, deep\_vec, class\_id]
- append to list all\_feats

## 7. After browsing through the photos and labels:

- Build a DataFrame from all\_feats with columns manual\_cols + deep\_cols + ['label']
- CSV export

## 3.3.2. Random Forest model training

The main purpose of this algorithm is to train a Random Forest classifier to classify objects based on the features that have been extracted and stored in the extracted output.

- df ← READ CSV("Featured Extracted CSV File")
- num\_labels ← COUNT\_UNIQUE(df.label)
- num\_rows ← NUMBER\_OF\_ROWS(df)
- $X \leftarrow df[["width","height","area_ratio","aspect_ratio", "avg_b", "avg_g", "avg_r",....]]$
- $y \leftarrow df["label"]$
- lb ← INITIALIZE\_LabelBinarizer()
- $y_bin \leftarrow lb.fit_transform(y)$

## 1. rf←INITIALIZE\_Random ForestClassifier(random\_state=17, class\_weight="balanced")

```
• paramGrid ← {
```

```
n_estimators: [INT(num_rows/12), INT(num_rows/8), INT(num_rows/5)], max_depth: [None], max_samples: [0.8, 0.7, 0.65]
```

• skf ← INITIALIZE\_StratifiedKFold(n\_splits=6, shuffle=True, random\_state=17)

- gridSearch ← INITIALIZE\_GridSearchCV(rf, paramGrid, cv=skf, scoring="accuracy", n\_jobs=-1)
- gridSearch.fit(X, y)
- PRINT gridSearch.best\_params\_ and gridSearch.best\_score\_
- bestRF ← gridSearch.best\_estimator\_
- SAVE (bestRF, lb) to "random\_forest\_model2\_trash.pkl"

```
PS D:\Project_yolo> python -u "d:\Project_yolo\best_train.py"
Number of samples: 6491, features per sample: 775
Optimal parameters: {'max_depth': None, 'max_samples': 0.8, 'n_estimators': 1298}
Average accuracy: 0.8832226045636622
RandomForest model saved to: random_forest_model2_trash.pkl
```

Fig. 9 Optimal image parameters: {'max\_depth': None, 'max\_samples': 0.8, 'n\_estimators': 4327}

Average Accuracy: 0.8832226045636622

The most critical points typically involve:

- Proper normalization and correct feature selection before model training.
- Label handling (binary vs. multiclass) and ensuring the model input matches the label format.
- Parameter tuning (e.g., n\_estimators, max\_samples) based on practical considerations rather than simple formulas like dividing num rows.
- Stratified cross-validation to preserve class distributions in each fold, making classification model evaluation fairer and more reliable.
- Saving and reusing the essential objects (e.g., trained model, label encoder) correctly for later inference.

```
3.3.3. Preparing the PCA Step
    INPUT: image (file path or image array),
        n_components (number of PCA components, default=2),
        whiten (whether to whiten PCA components, default=False),
        svd_solver (SVD algorithm to use, default='auto')
    IF image is a string (i.e. a file path):
     img ← cv2.imread(image, cv2.IMREAD_UNCHANGED)
    ELSE:
     img \leftarrow image.copy()
     IF img is None:
    PRINT "Cannot load image!"
    RETURN None
     img_norm \leftarrow img.astype(float32) / 255.0 \leftarrow *Normalize to [0,1] before PCA*
      h, w \leftarrow img\_norm.shape[:2]
    IF img_norm has 2 dimensions:
      chans \leftarrow 1
    ELSE:
      chans \leftarrow img_norm.shape
      data ← reshape img_norm into matrix of shape `[h*w rows] × [chans columns]`
      n\_comp \leftarrow min(n\_components, chans)
      PCA_model ← PCA(n_components=n_comp, whiten=whiten, svd_solver=svd_solver)
      data_pca \leftarrow PCA_model.fit_transform(data)
      data\_rec \leftarrow PCA\_model.inverse\_transform(data\_pca)
    IF chans > 1:
```

```
img_rec ← reshape data_rec back to (h, w, chans)
ELSE:
img_rec ← reshape data_rec back to (h, w)
img_rec ← clip(img_rec * 255, 0, 255).astype(uint8)
IF 1 < chans ≤ 4:
img_out ← zeros_like(img_rec)
FOR each channel i in 0 to chans-1:
img_out[..., i] ← cv2.equalizeHist(img_rec[..., i])
RETURN img_out
RETURN img_rec</pre>
```

## Key Points to Note

- Step 3–5 (Image Loading): Verify the correct file path or input type to avoid early errors.
- Step 9 (Normalization): Convert pixels to float in [0,1] so PCA computes a stable covariance matrix.
- Step 16 (Number of Components): Ensure n\_components does not exceed the number of channels, so PCA can capture the true data subspace.
- Step 18 (fit\_transform): Applying PCA to the entire data matrix can be very heavy for large images—consider block-wise processing. This step compresses, smooths, and denoises the data by keeping only the highest-variance components.
- Step 19 (inverse\_transform): Reconstruction loses some fine details (small textures) even as overall noise is reduced and smoothness increases.
- Step 24 (Clipping & Casting): After scaling back by 255, clip values to [0,255] before casting to uint8 to ensure valid pixel intensities.
- Step 28 (Histogram Equalization): Equalizing each channel separately can alter the original color balance; use only when increased contrast and detail enhancement are required. [12]

## 4. Result

#### 4.1. Results and Research

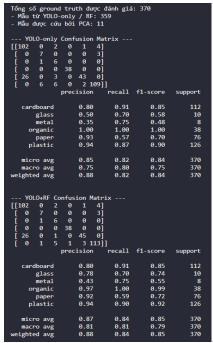



Fig. 10 YOLOv10 and Random Forest + YOLOv10 prediction performance through actual images

Evaluate the model performance in Figure 7:

Overall Improvement: When RF was added, the accuracy (micro/weighted) improved by about 2% and the macro-avg – the balance between layers – also increased slightly. This shows that RF has helped correct some critical mislabels, especially with the previous layers of YOLO being very weak.

| Class   | Support | Precision                            | Recall                               | F1-score                          |
|---------|---------|--------------------------------------|--------------------------------------|-----------------------------------|
| Glass   | 10      | $0.50 \rightarrow 0.78 \ (+0.28)$    | $0.70 \rightarrow 0.70 \ (\pm 0.00)$ | $0.58 \rightarrow 0.74 \ (+0.16)$ |
| Metal   | 8       | $0.35 \rightarrow 0.43 \ (+0.08)$    | $0.75 \rightarrow 0.75 \ (\pm 0.00)$ | $0.48 \rightarrow 0.55 \ (+0.07)$ |
| Paper   | 76      | $0.93 \rightarrow 0.92 (-0.01)$      | $0.57 \rightarrow 0.59 \ (+0.02)$    | $0.70 \rightarrow 0.72 \ (+0.02)$ |
| Plastic | 126     | $0.94 \rightarrow 0.94 \ (\pm 0.00)$ | $0.87 \rightarrow 0.90 \ (+0.03)$    | $0.90 \rightarrow 0.92 (+0.02)$   |

Overall: Adding Random Forest to confidence intervals where YOLO is prone to errors resulted in an overall improvement: the micro-avg F1-score increased from 0.84 to 0.85, the weighted F1-avg also increased from 0.84 to 0.85, and the average macro-avg F1-score increased from 0.75 to 0.79. The weakest classes, glass and metal, benefited the most—the glass F1-score increased by +0.16 and the metal F1-score increased by +0.07—while the other classes remained the same or improved slightly. This confirms that RF is valuable for handling the moderately confident predictions that YOLO is prone to errors, while preserving the performance of confident predictions.

| YO                                  |       |      |      |      |        | x       |          |            |
|-------------------------------------|-------|------|------|------|--------|---------|----------|------------|
| [[102                               | 0     | 2    | 0    | 1    | 4]     |         |          |            |
| [ 0                                 |       |      | 0    | 0    | 3]     |         |          |            |
| [ 0                                 | 1     | 6    | 0    | 0    | 0]     |         |          |            |
| [ 0                                 | 0     | 0    | 38   | 0    | 0]     |         |          |            |
| Ī 26                                | 0     | 1    | 0    | 45   | 0]     |         |          |            |
| Γø                                  | 1     | 5    | 1    | 3    | 113]]  |         |          |            |
| _                                   |       |      | prec | isio | n -    | recall  | f1-score | support    |
|                                     |       |      |      |      |        |         |          |            |
| care                                | lboar | rd   |      | 0.8  | 0      | 0.91    | 0.85     | 112        |
|                                     | glas  |      |      | 0.7  |        | 0.70    | 0.74     | 10         |
|                                     | meta  |      |      | 0.4  |        | 0.75    | 0.55     | 8          |
| 01                                  | rgani |      |      | 0.9  |        | 1.00    | 0.99     | 38         |
| <u> </u>                            | pape  |      |      | 0.9  |        | 0.59    | 0.72     | 76         |
|                                     | lasti |      |      | 0.9  |        | 0.90    | 0.92     | 126        |
| Ρ.                                  | Lastı |      |      | 0.5  | 4      | 0.50    | 0.32     | 120        |
| mi c                                |       |      |      | 00   | 7      | 0.84    | 0.85     | 370        |
|                                     | ro av |      |      | 0.8  |        |         |          | 370        |
|                                     | ro av |      |      | 0.8  |        | 0.81    | 0.79     |            |
| weighte                             | ed av | /g   |      | 0.8  | ŏ      | 0.84    | 0.85     | 370        |
|                                     |       |      |      |      |        |         |          |            |
|                                     |       |      |      |      |        |         |          |            |
|                                     |       |      |      |      |        | atrix - |          |            |
| [[103                               | 0     | 2    |      |      | 5]     |         |          |            |
| [ 0                                 | 7     | 0    |      |      |        |         |          |            |
|                                     | 1     | 7    | 0    | 0    |        |         |          |            |
| [ 0                                 | 0     | 0    | 38   | 0    | 0]     |         |          |            |
| [ 27                                | 0     | 1    | 0    |      | 0]     |         |          |            |
| [ 0                                 | 1     | 5    | 1    | 3    | 116]]  |         |          |            |
|                                     |       |      | prec | isio | n i    | recall  | f1-score | support    |
|                                     |       |      |      |      |        |         |          |            |
| card                                | dboar | ٠d   |      | 0.7  | 9      | 0.92    | 0.85     | 112        |
|                                     | glas  |      |      | 0.7  | 8      | 0.70    | 0.74     | 10         |
|                                     | meta  |      |      | 0.4  |        | 0.88    | 0.61     | 8          |
| O                                   | rgani |      |      | 0.9  |        | 1.00    |          | 38         |
| <u>.</u>                            | pape  |      |      | 0.9  |        | 0.63    | 0.74     | 76         |
| n.                                  | lasti |      |      | 0.9  |        | 0.92    | 0.93     | 126        |
| ρ.                                  | Lasci |      |      | 0.5  | _      | 0.52    | 0.55     | 120        |
| 35                                  | curac |      |      |      |        |         | 0.86     | 370        |
|                                     | ro av |      |      | 0.8  | 1      | 0.84    | 0.81     | 370<br>370 |
|                                     |       | _    |      |      |        |         |          |            |
| weighte                             | eu av | 'g   |      | 0.8  | 0      | 0.86    | 0.86     | 370        |
|                                     | >60   |      |      | - 70 | E /270 | 02-4    | 70/      |            |
| Accura                              | y YC  | JLU- | only | : 30 | 5/3/0  | = 82.4  | 5%       |            |
| Accura                              |       |      |      |      |        | = 84.0  |          |            |
| Accura                              | y YC  | )LO+ | RF+P | CA:  | 319/3  | 70 = 86 | . 22%    |            |
| 10 · PF 1 VOI O10 · P 1 F 1 PCA 1 1 |       |      |      |      |        |         |          |            |

Fig. 11 YOLOv10 + RF and YOLOv10 + Random Forest and PCA prediction performance via actual images

Evaluate the model performance in Figure 8:

| Table 3. Per-class precision, recall, and F1 score for YOLOv10 and its variants with Random Forest and PCA on actual images |
|-----------------------------------------------------------------------------------------------------------------------------|
| (corresponding to Figure 8)                                                                                                 |

|           | (corresponding to right o) |                                      |                                      |                                      |  |  |  |  |  |
|-----------|----------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--|--|--|--|
| Class     | Support                    | Precision                            | Recall                               | F1-score                             |  |  |  |  |  |
| Cardboard | 112                        | $0.80 \rightarrow 0.79 (-0.01)$      | $0.91 \rightarrow 0.92 (+0.01)$      | $0.85 \rightarrow 0.85 \ (\pm 0.00)$ |  |  |  |  |  |
| Glass     | 10                         | $0.78 \rightarrow 0.78 \ (\pm 0.00)$ | $0.70 \rightarrow 0.70 \ (\pm 0.00)$ | $0.74 \rightarrow 0.74 \ (\pm 0.00)$ |  |  |  |  |  |
| Metal     | 8                          | $0.43 \rightarrow 0.47 (+0.04)$      | $0.75 \rightarrow 0.88 \ (+0.13)$    | $0.55 \rightarrow 0.61 (+0.06)$      |  |  |  |  |  |
| Organic   | 38                         | $0.97 \rightarrow 0.97 \ (\pm 0.00)$ | $1.00 \rightarrow 1.00 \ (\pm 0.00)$ | $0.99 \rightarrow 0.99 \ (\pm 0.00)$ |  |  |  |  |  |
| Paper     | 76                         | $0.92 \rightarrow 0.91 (-0.02)$      | $0.59 \rightarrow 0.63 (+0.04)$      | $0.72 \rightarrow 0.74 (+0.02)$      |  |  |  |  |  |
| Plastic   | 126                        | $0.94 \rightarrow 0.94 (\pm 0.00)$   | $0.90 \rightarrow 0.92 (+0.02)$      | $0.92 \rightarrow 0.93 (+0.01)$      |  |  |  |  |  |

#### Overall:

- Metal benefits the most: recall +13 pp, precision +4 pp  $\rightarrow$  F1 +6 pp.
- Paper & Plastic see modest recall gains (+4–+5 pp) and slight F1 bumps.
- Cardboard picks up one extra true positive (recall +1 pp) and one extra false positive (precision -1 pp), leaving F1 unchanged.
- Glass & Organic remain perfectly stable under PCA fallback.

PCA fallback is especially effective with "blurry" or small objects (metal, paper), helping the pipeline capture more accurate detections



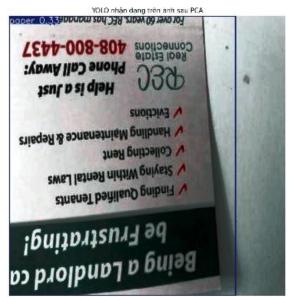



Fig. 12 The PCA application result in the picture is the same color as the background color

#### 4.2. Overall Performance Comparison and Detailed Performance of Sorting Each Garbage

## 4.2.1. Overall Performance

Based on 370 ground-truth samples, three configurations were evaluated:

- YOLO-only / RF: YOLO detection combined with Random Forest classification
- YOLO+RF: YOLO for region proposals followed by RF classification
- YOLO+RF+PCA: same as above, with an additional PCA dimensionality reduction step before RF

Table 4. Overall accuracy comparison for three configurations: YOLO-only / RF, YOLO + RF, and YOLO + RF + PCA

| Configuration  | <b>Correct Predictions</b> | Accuracy (%) |
|----------------|----------------------------|--------------|
| YOLO-only / RF | 305 / 370                  | 82.43%       |
| YOLO+RF        | 311 / 370                  | 84.05%       |
| YOLO+RF+PCA    | 319 / 370                  | 86.22%       |

- Adding RF after YOLO improves accuracy from 82.43% to 84.05%, a gain of +1.62 pp.
- Further incorporating PCA raises accuracy to **86.22**%, another **+2.17 pp** above YOLO+RF and **+3.79 pp** above YOLO-only.
- This steady improvement indicates both RF and PCA contribute positively, especially in reducing confusion between visually similar classes (e.g., "paper" vs. "cardboard").

#### 4.2.2. Detailed Performance by Garbage Type

Table 5. Detailed performance by garbage type for three configurations: YOLO-only,

| YOLO + | Random | Forest and  | YOI O + | Random   | Forest + PCA |
|--------|--------|-------------|---------|----------|--------------|
| IOLO T | Kanuom | TUTEST, and | LIOLOT  | - Kanuom | TUIEST TICA  |

| Class              | Support | Precision (YOLO-only →<br>YOLO+RF →<br>YOLO+RF+PCA) | Recall (YOLO-only →<br>YOLO+RF →<br>YOLO+RF+PCA) | F1-score (YOLO-only $\rightarrow$ YOLO+RF $\rightarrow$ YOLO+RF+PCA) |
|--------------------|---------|-----------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------|
| cardboard<br>(112) | 112     | $0.80 \to 0.80 \to 0.79$                            | $0.91 \to 0.91 \to 0.92$                         | $0.85 \to 0.85 \to 0.85$                                             |
| <b>glass</b> (10)  | 10      | $0.50 \rightarrow 0.78 \rightarrow 0.78$            | $0.70 \to 0.70 \to 0.70$                         | $0.58 \to 0.74 \to 0.74$                                             |
| metal (8)          | 8       | $0.35 \rightarrow 0.43 \rightarrow 0.47$            | $0.75 \to 0.75 \to 0.88$                         | $0.48 \to 0.55 \to 0.61$                                             |
| organic<br>(38)    | 38      | $1.00 \rightarrow 0.97 \rightarrow 0.97$            | $1.00 \to 1.00 \to 1.00$                         | $1.00 \to 0.99 \to 0.99$                                             |
| <b>paper</b> (76)  | 76      | $0.93 \rightarrow 0.92 \rightarrow 0.91$            | $0.57 \to 0.59 \to 0.63$                         | $0.70 \to 0.72 \to 0.74$                                             |
| plastic<br>(126)   | 126     | $0.94 \rightarrow 0.94 \rightarrow 0.94$            | $0.87 \to 0.90 \to 0.92$                         | $0.90 \to 0.92 \to 0.93$                                             |

- Glass: precision jumps from 0.50 to 0.78 with RF and stays at 0.78 with PCA; recall stable at 0.70 → F1 from 0.58 to 0.74, showing RF greatly reduces glass misclassification.
- Metal: recall climbs from 0.75 to 0.88 with PCA, lifting F1 from 0.48 to 0.61, indicating PCA helps distinguish metal objects better.
- Paper: recall increases from 0.57 (YOLO-only) to 0.63 (with PCA), F1 improves from 0.70 to 0.74, reflecting improved detection of varied paper textures.
- Plastic and cardboard are already high, maintain precision ≥ 0.90 and recall ≥ 0.90, confirming model stability.
- Organic consistently perfect in recall with near-perfect precision, thanks to distinct color and shape features.

#### Overall

Compared with YOLO-only, adding RF yields the most improvement for challenging classes (glass, metal), while PCA further boosts recall and F1 for metal, paper, and plastic. Overall, YOLO+RF+PCA achieves the best performance, making it well-suited for an automated waste-sorting system handling diverse material types.

## 5. Discuss

The study used the "Trash Classification" dataset with a total of 5,771 images, split into 80% for training, 13% for testing, and 7% + some images for evaluation, including 6 object classification labels: Plastic, Paper, Metal, Glass, Organic, and Cardboard. If you do not believe the improvement, here is how it performed when running on the original dataset and 2 other datasets:

Table 6. Recall comparison for the original trash dataset and explanatory analysis of Random Forest and PCA contributions

| Original<br>Trash<br>Dataset | YOLO-only<br>Recall | YOLO + RF<br>Recall | YOLO + RF +<br>PCA Recall | ΔRF         | Δ РСА   | Why (Mechanism)                                                                                          |
|------------------------------|---------------------|---------------------|---------------------------|-------------|---------|----------------------------------------------------------------------------------------------------------|
| cardboard                    | 0.99                | 0.99                | 0.99                      | 0.00        | 0.00    | Already near perfect; neither RF nor PCA needed.                                                         |
| glass                        | 0.88                | 0.88                | 0.88                      | 0.00        | 0.00    | Glass vs. background confusion remains unchanged; few low-conf detections in the RF window.              |
| metal                        | 0.75                | 0.75                | 0.88                      | 0.00        | +0.13   | PCA's contrast enhancement<br>makes low-contrast metal surfaces<br>detectable when YOLO alone<br>failed. |
| organic                      | 1.00                | 1.00                | 1.00                      | 0.00        | 0.00    | Organic waste is visually distinctive and has already been perfectly detected by YOLO.                   |
| paper                        | 0.45                | 0.47                | 0.47                      | +0.02       | 0.00    | A couple of borderline paper patches (confidence just below threshold) get corrected by RF.              |
| plastic                      | 0.98                | 0.98                | 0.99                      | 0.00        | +0.01   | PCA rescues one low-contrast plastic item that both YOLO and RF missed.                                  |
| Overall                      | 90.04 %             | 90.41 %             | 91.14 %                   | +0.37<br>pp | +0.73 p | PCA only runs when YOLO finds no boxes—here it rescued 2 samples out of 271.                             |

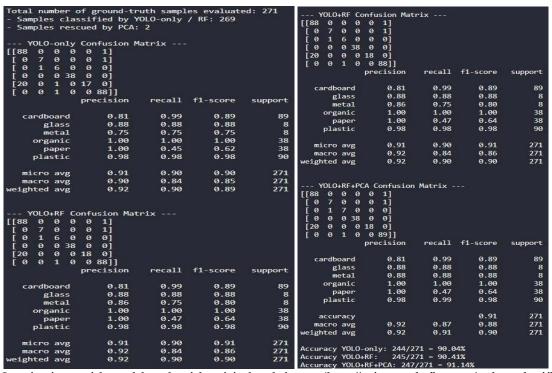



Fig. 13 Overview image of the model results of the original trash datasets (https://universe.roboflow.com/garbage-classification-scqyu/trash-detection-ujrn0/dataset/1)

Table 7. Recall comparison for the fruit dataset and explanatory analysis of Random Forest and PCA contributions

| Emit Detect   | YOLO-only | YOLO+RF | YOLO+RF+   | A DE        | A DCA   | D (                         |
|---------------|-----------|---------|------------|-------------|---------|-----------------------------|
| Fruit Dataset | Recall    | Recall  | PCA Recall | ΔRF         | Δ PCA   | Reason (mechanism)          |
|               |           |         |            |             |         | RF re-classifies borderline |
| potato        | 0.64      | 1.00    | 1.00       | +0.36       | 0.00    | potato boxes (score in [th, |
|               |           |         |            |             |         | th+win]).                   |
|               |           |         |            |             |         | RF helps disambiguate       |
| brick         | 0.76      | 0.82    | 0.82       | +0.06       | 0.00    | brick vs. red-brown         |
|               |           |         |            |             |         | textures.                   |
|               |           |         |            |             |         | RF's shape+texture          |
| cups          | 0.92      | 1.00    | 1.00       | +0.08       | 0.00    | features catch low-conf     |
|               |           |         |            |             |         | cups.                       |
|               |           |         |            |             |         | RF mis-fires on some        |
| plastic       | 0.87      | 0.80    | 0.80       | -0.07       | 0.00    | clear-plastic items →       |
|               |           |         |            |             |         | slight drop.                |
|               |           |         |            |             |         | RF rescues small white      |
| white_radish  | 0.60      | 0.80    | 0.80       | +0.20       | 0.00    | objects with deep           |
|               |           |         |            |             |         | features.                   |
| Overall       |           |         |            | +3.28       |         | PCA not invoked (YOLO       |
| Accuracy      | 87.98 %   | 91.26 % | 91.26 %    | +3.26<br>pp | 0.00 pp | found detections in all     |
| Accuracy      |           |         |            |             |         | cases).                     |

Total number of ground-truth samples evaluated: 183

- Samples classified by YOLO-only / RF: 180
- Samples rescued by PCA: 3

| YOLO+RF Confusion [[14 0 0 0 0 0 0 6 6 6 6 6 6 6 6 6 6 6 6 6                                                                                                                                       | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                           |                                                                | [ 0 13 0 2<br>[ 0 1 16 0<br>[ 2 0 0 13<br>[ 0 0 0 0 1<br>[ 0 0 0 0 0<br>[ 0 0 0 0 0<br>[ 0 0 0 0       | 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                      | trix 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0]<br>0 0]<br>0 0]<br>0 0]<br>0 0]<br>0 0]<br>0 0]<br>0 0]                         |                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------|
| precisio                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                   | support                                                        |                                                                                                        | precision                                                                                    | recall f1                                                                                                                                                    |                                                                                      | support                                                        |
| battery 0.8     brick 1.6     carrots 1.6     china 0.8     cobbles 0.5     cups 0.5 full_potato 1.6     med_plate 0.5     metal 0.5     plastic 0.8     potato 0.5     small 1.6 white_radish 0.8 | 0     0.82     0.90       0     1.00     1.00       7     0.87     0.87       0     0.90     0.90       2     1.00     0.96       0     1.00     1.00       2     1.00     0.96       0     0.79     0.84       6     0.80     0.83       2     1.00     0.96       0     1.00     1.00       1     1.00     1.00 | 15<br>17<br>17<br>15<br>10<br>12<br>17<br>11<br>24<br>15<br>11 | battery brick carrots china cobbles cups full_potato med_plate metal plastic potato small white_radish | 0.88<br>0.93<br>1.00<br>0.87<br>0.77<br>1.00<br>1.00<br>0.85<br>0.95<br>0.81<br>0.78<br>1.00 | 0.93<br>0.76<br>0.94<br>0.87<br>1.00<br>0.92<br>1.00<br>1.00<br>0.79<br>0.87<br>0.64<br>1.00                                                                 | 0.90<br>0.84<br>0.97<br>0.87<br>0.96<br>1.00<br>0.92<br>0.86<br>0.84<br>0.70<br>0.55 | 15<br>17<br>17<br>15<br>10<br>12<br>17<br>11<br>24<br>15<br>11 |
| micro avg 0.9<br>macro avg 0.9<br>weighted avg 0.9                                                                                                                                                 | 2 0.92 0.92                                                                                                                                                                                                                                                                                                       | 183<br>183<br>183                                              | micro avg<br>macro avg<br>weighted avg                                                                 | 0.89<br>0.87<br>0.90                                                                         | 0.88<br>0.87<br>0.88                                                                                                                                         | 0.89<br>0.87<br>0.89                                                                 | 183<br>183<br>183                                              |

| YOLO+RF+PC                             | Confusion    | Matrix       | 4            |          |  |  |  |  |
|----------------------------------------|--------------|--------------|--------------|----------|--|--|--|--|
| [[14 0 0 0                             | 0 0 0 0      | 1 0 0        | 0 0]         |          |  |  |  |  |
| [014 0 2                               | 0 0 0 0      | 0 0 1        | - 100 miles  |          |  |  |  |  |
| 0 0 17 0                               | 0 0 0 0      | 0 0 0        | 0 01         |          |  |  |  |  |
| [2 0 0 13                              | 0 0 0 0      | 0 0 0        | 0 0]         |          |  |  |  |  |
| [0000]                                 | 9 0 0 0      | 0 0 0        | 0 1]         |          |  |  |  |  |
| [0000                                  | 0 12 0 0     | 0 0 0        | 0 0]         |          |  |  |  |  |
| [0000                                  | 0 0 17 0     | 0 0 0        | 0 0]         |          |  |  |  |  |
| [0000                                  | 0 0 0 11     | 0 0 0        | 0 0]         |          |  |  |  |  |
| [0000                                  | 0 2 0 1      | 19 2 0       | 0 0]         |          |  |  |  |  |
| [0000                                  | 0 0 0 2      | 1 12 0       | 0 0]         |          |  |  |  |  |
| [0000                                  | 0 0 0 0      |              | 0 0]         |          |  |  |  |  |
| [0000                                  | 0 0 0 0      |              | 14 0]        |          |  |  |  |  |
| [0000                                  | 1 0 0 0      | 0 0 0        | 0 4]]        |          |  |  |  |  |
|                                        | precision    | recall       | f1-score     | support  |  |  |  |  |
| 2.22                                   | Δ 00         | 0.03         | 0.00         | 15       |  |  |  |  |
| battery<br>brick                       | 0.88<br>1.00 | 0.93<br>0.82 | 0.90<br>0.90 | 15<br>17 |  |  |  |  |
| carrots                                | 1.00         | 1.00         | 1.00         | 17<br>17 |  |  |  |  |
| carrocs                                | 0.87         | 0.87         | 0.87         | 17       |  |  |  |  |
| cobbles                                | 0.90         | 0.90         | 0.90         | 10       |  |  |  |  |
| cups                                   | 0.86         | 1.00         | 0.92         | 12       |  |  |  |  |
| full potato                            | 1.00         | 1.00         | 1.00         | 17       |  |  |  |  |
| med plate                              | 0.79         | 1.00         | 0.88         | 11       |  |  |  |  |
| metal                                  | 0.90         | 0.79         | 0.84         | 24       |  |  |  |  |
| plastic                                | 0.86         | 0.80         | 0.83         | 15       |  |  |  |  |
| potato                                 | 0.92         | 1.00         | 0.96         | 11       |  |  |  |  |
| small                                  | 1.00         | 1.00         | 1.00         | 14       |  |  |  |  |
| white_radish                           | 0.80         | 0.80         | 0.80         | 5        |  |  |  |  |
|                                        |              |              |              |          |  |  |  |  |
| accuracy                               |              |              | 0.91<br>0.91 | 183      |  |  |  |  |
| macro avg                              | 0.90         |              |              | 183      |  |  |  |  |
| weighted avg 0.92 0.91 0.91 183        |              |              |              |          |  |  |  |  |
| Accuracy YOLO-only: 161/183 = 87.98%   |              |              |              |          |  |  |  |  |
| Accuracy YOLO+RF: 167/183 = 91.26%     |              |              |              |          |  |  |  |  |
|                                        |              |              |              |          |  |  |  |  |
| Accuracy YOLO+RF+PCA: 167/183 = 91.26% |              |              |              |          |  |  |  |  |

Fig. 14 Overview image of the model results of the fruit datasets (https://universe.roboflow.com/zooc/my\_second\_project/dataset/1)

Table 8. Per-class recall for the garbage dataset with insights into how Random Forest and PCA enhance detection results

| Garbage<br>Dataset  | YOLO-only<br>Recall | YOLO + RF<br>Recall | YOLO + RF +<br>PCA Recall | ΔRF      | Δ PCA    | Reason (mechanism)                                                     |
|---------------------|---------------------|---------------------|---------------------------|----------|----------|------------------------------------------------------------------------|
| cardboard           | 0.72                | 0.76                | 0.79                      | +0.04    | +0.03    | RF corrects low-conf<br>cardboard; PCA recovers 1<br>sample on no-det. |
| metal               | 0.84                | 0.89                | 0.89                      | +0.05    | 0.00     | RF's metal-texture features boost metal detection.                     |
| glass               | 0.93                | 0.96                | 0.96                      | +0.03    | 0.00     | RF improves glass vs. plastic confusion.                               |
| trash               | 0.50                | 0.50                | 0.50                      | 0.00     | 0.00     | Rare class; neither RF nor<br>PCA can help without<br>more data.       |
| Overall<br>Accuracy | 84.85 %             | 86.58 %             | 87.01 %                   | +1.73 pp | +0.43 pp | PCA is invoked only when YOLO outputs zero boxes (rare).               |

| Tong s5 ground truth durc daink glia: 231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rat I     |          |         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------|---------|
| Main direct color both PCA: 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Tổng số ground truth được đánh giá: 231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                |         |            | YOLO+RF Confusion Matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |          |         |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |         |            | THE RESIDENCE OF THE PARTY OF T | 30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |          |         |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |          |         |
| [21 0 0 0 3 2 0] [0 0 43 1 0 2 0] [1 0 0 3 1 0 34 1] [1 0 0 2 1 1 5] [1 0 0 2 1 1 5] [1 0 0 2 1 1 5] [2 0 1 6 48 0 2 0] [3 0 1 0 34 1] [4 0 0 2 1 1 5] [5 0 1 6 48 0 2 0] [6 0 1 0 34 0 2 1] [7 0 0 2 1 1 5] [8 0 1 0 3 1 0 34 1] [8 0 0 3 1 0 34 1] [8 0 0 3 1 0 34 1] [9 0 1 2 1 1 5] [9 0 2 1 1 5] [9 0 1 0 40 0 2 1 1 5] [9 0 1 0 40 0 2] [1 0 0 2 1 1 5] [1 0 0 2 1 1 5] [1 0 0 2 1 1 5] [1 0 0 2 1 1 5] [1 0 0 2 1 1 5] [1 0 0 2 1 1 5] [1 0 0 2 1 1 5] [1 0 0 2 1 1 5] [1 0 0 2 1 1 5] [1 0 0 2 1 1 5] [1 0 0 2 1 1 5] [1 0 0 2 1 1 5] [1 0 0 2 1 1 5] [1 0 0 2 1 1 5] [1 0 0 2 1 1 5] [1 0 0 2 1 1 5] [1 0 0 2 1 1 5] [1 0 0 2 1 1 5] [1 0 0 2 1 1 5] [1 0 0 2 1 1 5] [1 0 0 2 1 1 5] [1 0 0 2 1 1 5] [1 0 0 2 1 1 5] [1 0 0 2 1 1 5] [1 0 0 2 1 1 5] [1 0 0 2 1 1 5] [1 0 0 2 1 1 5] [1 0 0 2 1 1 5] [1 0 0 2 1 1 5] [1 0 0 2 1 1 5] [1 0 0 2 1 1 5] [1 0 0 2 1 1 5] [1 0 0 2 1 1 5] [1 0 0 2 1 1 5] [1 0 0 2 1 1 0 5] [1 0 0 0 0 0 0 0] [1 0 0 0 0 0 0] [1 0 0 0 0 0 0] [1 0 0 0 0 0 0] [1 0 0 0 0 0 0] [1 0 0 0 0 0 0] [1 0 0 0 0 0 0] [1 0 0 0 0 0 0] [1 0 0 0 0 0 0] [1 0 0 0 0 0 0] [1 0 0 0 0 0 0] [1 0 0 0 0 0 0] [1 0 0 0 0 0 0] [1 0 0 0 0 0 0] [1 0 0 0 0 0 0] [1 0 0 0 0 0 0] [1 0 0 0 0 0 0] [1 0 0 0 0 0 0] [1 0 0 0 0 0 0] [1 0 0 0 0 0 0] [1 0 0 0 0 0 0] [1 0 0 0 0 0 0] [1 0 0 0 0 0 0] [1 0 0 0 0 0 0] [1 0 0 0 0 0 0] [1 0 0 0 0 0 0] [1 0 0 0 0 0 0] [1 0 0 0 0 0 0] [1 0 0 0 0 0 0] [1 0 0 0 0 0 0] [1 0 0 0 0 0 0] [1 0 0 0 0 0 0] [1 0 0 0 0 0 0] [1 0 0 0 0 0 0] [1 0 0 0 0 0 0] [1 0 0 0 0 0 0] [1 0 0 0 0 0 0] [1 0 0 0 0 0 0] [1 0 0 0 0 0 0] [1 0 0 0 0 0 0] [1 0 0 0 0 0 0] [1 0 0 0 0 0 0] [1 0 0 0 0 0 0] [1 0 0 0 0 0 0] [1 0 0 0 0 0 0] [1 0 0 0 0 0 0] [1 0 0 0 0 0 0] [1 0 0 0 0 0 0] [1 0 0 0 0 0 0] [1 0 0 0 0 0 0] [1 0 0 0 0 0 0] [1 0 0 0 0 0 0] [1 0 0 0 0 0 0] [1 0 0 0 0 0 0] [1 0 0 0 0 0 0] [1 0 0 0 0 0 0] [1 0 0 0 0 0 0] [1 0 0 0 0 0 0] [1 0 0 0 0 0 0] [1 0 0 0 0 0 0] [1 0 0 0 0 0 0] [1 0 0 0 0 0 0] [1 0 0 0 0 0 0] [1 0 0 0 0 0 0] [1 0 0 0 0 0 0] [1 0 0 0 0 0 0] [1 0 0 0 0 0 0] [1 0 0 0 0 0 0] [1 0 0 0 0 0 0] [1 0 0 0 0 0 0] [1 0 0 0 0 0 0] [1 0 0 0 0 0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | to the second                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |          |         |
| [ 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | YOLO-only C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | onfusion Ma                    | atrix   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.43                                     | 1,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |          |         |
| [ 1 0 2 1 1 0 5] precision recall f1-score support    Cardboard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [[21 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3 2 0]                         |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | 20 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |          |         |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [0600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 0 0]                         |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | Marie Control of the Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |          |         |
| [ 0 0 1 0 39 0 3] [ 0 0 3 1 0 34 1] [ 1 0 0 2 1 1 5] [ 1 0 0 2 1 1 5] [ 1 0 0 2 1 1 5] [ 1 0 0 2 1 1 5] [ 1 0 0 2 1 1 5] [ 1 0 0 2 1 1 5] [ 1 0 0 2 1 1 5] [ 1 0 0 2 1 1 5] [ 1 0 0 2 1 1 5] [ 1 0 0 2 1 1 5] [ 1 0 0 2 1 1 5] [ 1 0 0 0 0 2 1 1 5] [ 1 0 0 0 2 1 1 5] [ 1 0 0 0 0 2 1 1 5] [ 1 0 0 0 0 2 1 1 5] [ 1 0 0 0 0 2 1 1 5] [ 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | [0 0 43 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 2 0]                         |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | The second secon |           |          | 180     |
| Cardboard 0.96 0.76 0.85 29  [1 0 0 2 1 1 5]  precision recall f1-score support  Cardboard 0.95 0.72 0.82 29  Garbage 0.86 1.00 0.92 6  Glass 0.81 0.93 0.89 0.91 57  Paper 0.91 0.89 0.88 57  Paper 0.91 0.89 0.88 57  Paper 0.91 0.89 0.85 39  Trash 0.56 0.50 0.53 10  micro avg 0.86 0.85 0.86 231  macro avg 0.86 0.85 0.85 231  weighted avg 0.87 0.85 0.85 231  [22 0 0 0 3 1 0]  [0 0 1 3 51 0 2 0]  [0 0 1 3 51 0 2 0]  [0 0 1 0 40 0 2]  [0 0 1 0 40 0 2]  [1 0 2 1 1 0 5]  precision recall f1-score support  Cardboard 0.96 0.76 0.85 29  Garbage 0.86 1.00 0.92 66  Glass 0.83 0.96 0.89 0.82 231  weighted avg 0.88 0.87 0.85 29  Garbage 0.86 1.00 0.92 66  Glass 0.83 0.96 0.89 0.90 44  macro avg 0.88 0.87 0.87 231  Cardboard 0.96 0.76 0.85 29  Garbage 0.86 1.00 0.92 66  Glass 0.83 0.96 0.89 0.91 57  Paper 0.91 0.91 0.91 0.91 44  Plastic 0.89 0.89 0.91 57  Paper 0.91 0.91 0.91 0.91 44  Plastic 0.89 0.89 0.89 0.91 57  Paper 0.91 0.91 0.91 0.91 44  Plastic 0.89 0.89 0.89 0.91 57  Paper 0.91 0.91 0.91 0.91 44  Plastic 0.89 0.89 0.89 0.91 57  Paper 0.91 0.91 0.91 0.91 44  Plastic 0.89 0.89 0.85 39  Trash 0.56 0.50 0.53 10  Accuracy Vollo-nly: 196/231 = 84.85%  Accuracy Vollo-nly: 196/231 = 84.85%  Accuracy Vollo-RF: 200/211 = 86.56%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [0 1 6 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 2 0]                         |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | p                                        | recision                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | recall    | f1-score | support |
| Garbage 0.86 1.00 0.92 6 Glass 0.83 0.96 0.89 46 Glass 0.81 0.93 0.89 0.91 57 Paper 0.91 0.92 0.84 0.85 39 Trash 0.56 0.50 0.53 10 micro avg 0.86 0.85 0.85 0.85 0.85 29 [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 0 1 0] [0 0.44 1 | [00103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9 0 3]                         |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |          |         |
| Cardboard   0.95   0.72   0.82   29   Paper   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.9   | [0031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 34 1]                        |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cardboard                                | 0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.76      |          | 29      |
| Metal   0.93   0.89   0.91   57   57   63   63   63   63   63   63   63   6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [1002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 1 5]]                        |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Garbage                                  | 0.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.00      | 0.92     | 6       |
| Cardboard 0.95 0.72 0.82 29 Paper 0.91 0.91 0.91 44 Garbage 0.86 1.00 0.92 6 Plastic 0.89 0.82 0.85 39 Metal 0.92 0.84 0.88 57 Paper 0.91 0.89 0.90 44 micro avg 0.83 0.87 0.85 39 macro avg 0.86 0.85 0.85 231 macro avg 0.87 0.85 0.85 231 [23 0 0 0 3 1 0] [0 0 44 1 0 1 0] [0 1 3 51 0 2 0] [0 0 44 1 0 1 0] [0 1 0 40 0 2] [0 0 44 1 0 1 0] [0 0 1 0 40 0 2] [1 0 2 1 1 0 5]] precision recall f1-score support  Cardboard 0.96 0.76 0.85 29 Garbage 0.86 1.00 0.92 6 Glass 0.83 0.89 0.91 57 Paper 0.91 0.91 0.91 0.91 44 Plastic 0.89 0.82 0.85 0.85 291 micro avg 0.88 0.87 0.87 231 micro avg 0.88 0.87 0.8 | р                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | recision                       | recall  | f1-score   | support                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Glass                                    | 0.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.96      | 0.89     | 46      |
| Garbage 0.86 1.00 0.92 6 Trash 0.56 0.50 0.53 10  Metal 0.92 0.84 0.88 57 Paper 0.91 0.89 0.90 44 Plastic 0.83 0.87 0.85 39 micro avg 0.86 0.85 0.86 231 macro avg 0.83 0.82 0.82 0.82 231 weighted avg 0.87 0.85 0.85 231  [[22 0 0 0 3 1 0] [ 0 0 44 1 0 1 0] [ 0 1 3 51 0 2 0] [ 0 0 1 0 40 0 2] [ 1 0 2 1 1 0 5] [ 0 0 1 0 40 0 2] [ 1 0 2 1 1 0 5] [ 0 0 1 0 40 0 2] [ 1 0 2 1 1 0 5] [ 0 0 3 2 0 32 2] [ 1 0 2 1 1 0 5] [ 0 0 3 0 .83 0.89 0.91 57 Paper 0.91 0.91 0.89 0.82 0.85 39 micro avg 0.88 0.87 0.87 231  Cardboard 0.96 0.76 0.85 29 Garbage 0.86 1.00 0.92 6 Glass 0.83 0.96 0.89 46 Metal 0.93 0.89 0.91 57 Paper 0.91 0.91 0.91 0.91 44 Plastic 0.89 0.82 0.85 39 micro avg 0.88 0.87 0.87 231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | W.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                |         |            | 1878                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Metal                                    | 0.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.89      | 0.91     | 57      |
| Glass 0.81 0.93 0.87 46 Metal 0.92 0.84 0.88 57 Paper 0.91 0.89 0.90 44 Plastic 0.83 0.87 0.85 39 micro avg 0.86 0.85 0.86 231 micro avg 0.86 0.85 0.86 231 micro avg 0.83 0.82 0.82 231 weighted avg 0.83 0.82 0.82 231  YOLO+RF Confusion Matrix [[22 0 0 0 3 1 0] [ 0 0 44 1 0 1 0] [ 0 1 3 51 0 2 0] [ 0 0 44 1 0 1 0] [ 0 0 1 0 40 0 2] [ 1 0 2 1 1 0 5]]  precision recall f1-score support  Cardboard 0.96 0.76 0.85 29 Garbage 0.86 1.00 0.92 6 Faper 0.91 0.91 0.91 0.91 44 Plastic 0.89 0.82 0.85 39 Trash 0.56 0.50 0.53 10  micro avg 0.88 0.87 0.87 231  Accuracy YOLO-RF: 200/231 = 84.85%  Accuracy YOLO-RF: 200/231 = 84.85%  Accuracy YOLO-RF: 200/231 = 84.85%  Accuracy YOLO-RF: 200/231 = 86.58%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cardboard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.95                           |         |            | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Paper                                    | 0.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.91      |          | 44      |
| Metal         0.92         0.84         0.88         57           Paper         0.91         0.89         0.90         44           Plastic         0.83         0.87         0.85         39           micro avg         0.86         0.50         0.53         10           micro avg         0.86         0.85         0.86         231           macro avg         0.83         0.82         0.82         231           weighted avg         0.87         0.85         0.85         231           YOLOHRF Confusion Matrix [[22 0 0 0 3 1 0] [             [0 6 0 0 0 0 0] [             [0 0 44 1 0 1 0] [             [0 1 3 51 0 2 0] [             [0 0 3 2 0 32 2] [             [1 0 2 1 1 0 5]] [             [0 0 3 2 0 32 2] [             [1 0 2 1 1 0 5]] [             [0 0 3 2 0 32 2] [             [1 0 2 1 1 0 5]] [             [0 0 3 2 0 32 2] [             [1 0 2 1 1 0 5]] [             [0 0 3 2 0 32 2] [             [1 0 2 1 1 0 5]] [             [0 0 3 2 0 32 2] [             [1 0 2 1 1 0 5]] [             [0 0 3 2 0 32 2] [             [1 0 2 1 1 0 5]] [             [0 0 3 2 0 32 2] [             [1 0 2 1 1 0 5]] [             [0 0 3 2 0 32 2] [             [1 0 2 1 1 0 5]] [             [0 0 3 2 0 32 2] [             [1 0 2 1 1 0 5]] [             [0 0 3 2 0 32 2] [             [1 0 2 1 1 0 5]] [             [0 0 3 2 0 32 2] [             [1 0 2 1 1 0 5]] [             [0 0 3 2 0 32 2] [             [1 0 2 1 1 0 5]] [             [0 0 3 2 0 32 2] [             [1 0 2 1 1 0 5]] [             [0 0 3 2 0 32 2] [             [1 0 0 0 1 0 40 0 0 2] [             [0 0 3 2 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |          | 1000    |
| Paper 0.91 0.89 0.90 44 Plastic 0.83 0.87 0.85 39 Trash 0.56 0.50 0.53 10  micro avg 0.86 0.85 0.86 231 macro avg 0.87 0.85 0.85 231  micro avg 0.88 0.87 0.87 231  micro avg 0.86 0.85 0.86 231  YOLO+RF Confusion Matrix  [[22 0 0 0 3 1 0] [0 0 44 1 0 1 0] [0 1 3 51 0 2 0] [0 0 44 1 0 1 0] [0 1 3 51 0 2 0] [0 0 1 0 40 0 2] [1 0 2 1 1 0 5]]  precision recall f1-score support  Cardboard 0.96 0.76 0.85 29 Garbage 0.86 1.00 0.92 6 Plastic 0.84 0.82 0.83 39 Metal 0.93 0.89 0.91 57 Paper 0.91 0.91 0.91 44 Plastic 0.89 0.82 0.85 39 Trash 0.56 0.50 0.53 10  micro avg 0.88 0.87 0.87 231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |         |            | 2372                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Trash                                    | 0.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.50      | 0.53     | 10      |
| Plastic 0.83 0.87 0.85 39 Trash 0.56 0.50 0.53 10 macro avg 0.85 0.83 0.84 231  micro avg 0.86 0.85 0.86 231 macro avg 0.83 0.82 0.82 231  weighted avg 0.87 0.85 0.85 231  [[22 0 0 0 3 1 0] [ 0 6 0 0 0 0 0] [ 0 0 44 1 0 1 0] [ 0 1 0 40 0 2] [ 0 0 3 2 0 32 2] [ 1 0 2 1 1 0 5]] precision recall f1-score support  Cardboard 0.96 0.76 0.85 29 Glass 0.83 0.96 0.89 46  Cardboard 0.96 0.76 0.85 29 Glass 0.83 0.96 0.89 46 Metal 0.93 0.89 0.91 57 Paper 0.91 0.91 0.91 0.91 44 Plastic 0.89 0.82 0.85 39 Trash 0.56 0.50 0.53 10  micro avg 0.88 0.87 0.87 231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 122                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |          | 100.00  |
| Trash 0.56 0.50 0.53 10 weighted avg 0.88 0.87 0.87 231  micro avg 0.86 0.85 0.86 231 macro avg 0.83 0.82 0.82 231 weighted avg 0.87 0.85 0.85 231  YOLO+RF Confusion Matrix [[22 0 0 0 3 1 0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | micro avg                                | 0.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.87      | 0.87     | 231     |
| micro avg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TO MAN TO SERVICE STATE OF THE |                                |         |            | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | macro avg                                | 0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.83      | 0.84     | 231     |
| macro avg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Trash                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.56                           | 0.50    | 0.53       | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | weighted avg                             | 0.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.87      | 0.87     | 231     |
| macro avg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |         |            | 975                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |          |         |
| Weighted avg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                |         |            | 1,000,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |          |         |
| [ 0 6 0 0 0 0 0 0 ]   [ 0 0 44 1 0 1 0 ]   [ 0 1 3 51 0 2 0 ]   [ 0 0 44 1 0 1 0 ]   [ 0 0 3 2 0 32 2 ]   [ 0 0 0 44 1 0 1 0 ]   [ 0 0 1 0 40 0 2 ]   [ 0 0 1 0 40 0 2 ]   [ 0 0 3 2 0 32 2 ]   [ 1 0 2 1 1 0 5 ] ]   precision   recall   f1-score   support     Garbage   0.86   1.00   0.92   6   Glass   0.83   0.96   0.89   46   Metal   0.93   0.88   0.81   0.96   0.85   39   Trash   0.56   0.50   0.53   10   macro avg   0.88   0.87   0.87   231   macro avg   0.85   0.83   0.84   231   macro avg   0.85   0.83   0.84   231   macro avg   0.85   0.83   0.84   231   macro avg   0.85   0.86   0.87   0.87   231   macro avg   0.85   0.86   0.87   231   macro avg   0.86     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |         |            | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | YOLO+RF+PCA                              | Confusion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Matrix -  |          |         |
| Trash   0.56   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50     | weighted avg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.87                           | 0.85    | 0.85       | 231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [[23 0 0 0 ]                             | 3 2 <b>1</b> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |          |         |
| Trash   0.56   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [0600                                    | 0 0 0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |          |         |
| [22 0 0 0 0 3 1 0] [0 6 0 0 0 0 0 0] [0 0 444 1 0 1 0] [0 1 3 51 0 2 0] [0 0 1 0 40 0 2] [0 0 0 3 2 0 32 2] [1 0 2 1 1 0 5]]  recision recall f1-score support  Cardboard 0.96 0.76 0.85 29 Garbage 0.86 1.00 0.92 6 Glass 0.83 0.96 0.89 46  Garbage 0.86 1.00 0.92 6 Glass 0.83 0.96 0.89 46  Metal 0.93 0.89 0.91 57 Paper 0.91 0.91 0.91 44 Plastic 0.89 0.82 0.85 39 Trash 0.56 0.50 0.53 10  micro avg 0.88 0.87 0.87 231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [0 0 44 1                                | 0 1 0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |          |         |
| [ 0 6 0 0 0 0 0 0 ] [ 0 0 44 1 0 1 0 ] [ 0 1 3 51 0 2 0 ] [ 0 0 1 0 40 0 2 ] [ 0 0 3 2 0 32 2 ] [ 1 0 2 1 1 0 5 ]]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | rix     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [0 1 3 51                                | 0 2 0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |          |         |
| [ 0 0 44 1 0 1 0 ] [ 0 1 3 51 0 2 0 ] [ 0 0 1 0 40 0 2 ] [ 0 0 3 2 0 32 2 ] [ 1 0 2 1 1 0 5 ]]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ■ ■ 100 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |         | [0 0 1 0 4 | 0 1 2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |          |         |
| [ 0 1 3 51 0 2 0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [0032                                    | 0 32 2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |          |         |
| [ 0  0  1  0  40  0  2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [1021                                    | 1 0 5]]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |          |         |
| [ 0 0 3 2 0 32 2] [ 1 0 2 1 1 0 5]] precision recall f1-score support precision   recall f1-score   support   Garbage   0.86   1.00   0.92   6   Glass   0.83   0.96   0.89   46   Metal   0.93   0.89   0.91   57   Paper   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91  | The second secon |                                |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | p                                        | recision                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | recall    | f1-score | support |
| [1 0 2 1 1 0 5]]     precision recall f1-score support  Cardboard 0.96 0.76 0.85 29     Garbage 0.86 1.00 0.92 6     Garbage 0.86 1.00 0.93 0.89 0.91 57     Paper 0.91 0.91 0.91 57     Paper 0.91 0.91 0.91 44     Plastic 0.89 0.82 0.85 39     Trash 0.56 0.50 0.53 10  micro avg 0.88 0.87 0.87 231     macro avg 0.88 0.87 0.87 231     macro avg 0.88 0.87 0.87 231     weighted avg 0.88 0.87 0.87 231     weighted avg 0.88 0.87 0.87 231     Accuracy YOLO-only: 196/231 = 84.85%     Accuracy YOLO-only: 196/231 = 84.85%     Accuracy YOLO-only: 196/231 = 86.58%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2000 - 2000 - 200 <del>0</del> |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |          | 2000    |
| Cardboard   0.96   0.76   0.85   29   0.86   1.00   0.92   6   0.89   0.80   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00                           |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cardboard                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |          | 2.55    |
| Cardboard 0.96 0.76 0.85 29 Metal 0.93 0.89 0.91 57 Garbage 0.86 1.00 0.92 6 Paper 0.91 0.91 0.91 44 Glass 0.83 0.96 0.89 46 Trash 0.50 0.50 0.50 10 Paper 0.91 0.91 0.91 44 Plastic 0.89 0.82 0.85 39 macro avg 0.83 0.84 0.83 231  micro avg 0.88 0.87 0.87 231 macro avg 0.88 0.87 0.87 231 macro avg 0.88 0.87 0.87 231 weighted avg 0.88 0.87 0.87 231 Accuracy YOLO-only: 196/231 = 84.85% Accuracy YOLO-only: 196/231 = 84.85% Accuracy YOLO-only: 196/231 = 86.58%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | nocal l | £1 ccone   | cuppont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | **************************************   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |          | 10000   |
| Cardboard 0.96 0.76 0.85 29 Garbage 0.86 1.00 0.92 6 Glass 0.83 0.96 0.89 46 Metal 0.93 0.89 0.91 57 Paper 0.91 0.91 0.91 44 Plastic 0.89 0.82 0.85 39 Trash 0.56 0.50 0.53 10  micro avg 0.88 0.87 0.87 231 macro avg 0.88 0.87 0.87 231 macro avg 0.88 0.87 0.87 231 weighted avg 0.88 0.87 0.87 231 Weighted avg 0.88 0.87 0.87 231 Accuracy YOLO-only: 196/231 = 84.85% Accuracy YOLO-only: 196/231 = 84.85% Accuracy YOLO-only: 196/231 = 86.58%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | recision                       | recall  | 11-Score   | support                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |          | 227752  |
| Garbage 0.86 1.00 0.92 6 Paper 0.91 0.91 0.91 44 O.82 0.83 39 O.83 0.83 0.96 0.89 46 Plastic 0.84 0.82 0.83 39 O.84 0.81 0.93 0.89 0.91 57 O.89 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Candhaand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.06                           | 0.76    | 0 9E       | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Metal                                    | 0.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.89      | 0.91     | 57      |
| Glass 0.83 0.96 0.89 46 Trash 0.50 0.50 0.50 10  Metal 0.93 0.89 0.91 57  Paper 0.91 0.91 0.91 44  Plastic 0.89 0.82 0.85 39 macro avg 0.83 0.84 0.83 231  Trash 0.56 0.50 0.53 10 weighted avg 0.87 0.87 231  micro avg 0.88 0.87 0.87 231  macro avg 0.88 0.87 0.87 231  weighted avg 0.88 0.87 0.87 231  Accuracy YOLO-only: 196/231 = 84.85%  Accuracy YOLO-only: 196/231 = 86.58%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Paper                                    | 0.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.91      | 0.91     | 44      |
| Metal         0.93         0.89         0.91         57         Irash         0.50         0.50         0.50         10           Paper         0.91         0.91         0.91         44         accuracy         0.87         231           Plastic         0.89         0.82         0.85         39         macro avg         0.83         0.84         0.83         231           micro avg         0.88         0.87         0.87         231         weighted avg         0.87         0.87         231           macro avg         0.88         0.87         0.87         231         Accuracy YOLO-only: 196/231 = 84.85%           weighted avg         0.88         0.87         0.87         231         Accuracy YOLO+RF: 200/231 = 86.58%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |         |            | 767.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Plastic                                  | 0.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.82      | 0.83     | 39      |
| Paper 0.91 0.91 0.91 44 Plastic 0.89 0.82 0.85 39 macro avg 0.83 0.84 0.83 231 Trash 0.56 0.50 0.53 10 weighted avg 0.87 0.87 231 micro avg 0.88 0.87 0.87 231 macro avg 0.85 0.83 0.84 231 macro avg 0.85 0.83 0.84 231 weighted avg 0.88 0.87 0.87 231 Accuracy YOLO-only: 196/231 = 84.85% Weighted avg 0.88 0.87 0.87 231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                |         |            | 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Trash                                    | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.50      | 0.50     | 10      |
| Plastic 0.89 0.82 0.85 39 accuracy 0.87 231 Trash 0.56 0.50 0.53 10 macro avg 0.83 0.84 0.83 231 weighted avg 0.87 0.87 0.87 231 macro avg 0.88 0.87 0.87 231 macro avg 0.85 0.83 0.84 231 weighted avg 0.87 0.87 231 Accuracy YOLO-only: 196/231 = 84.85% weighted avg 0.88 0.87 0.87 231 Accuracy YOLO-only: 196/231 = 86.58%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | And the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |         |            | 32.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11111                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |          | 100     |
| Trash 0.56 0.50 0.53 10 macro avg 0.83 0.84 0.83 231 weighted avg 0.87 0.87 231 micro avg 0.88 0.87 0.87 231 macro avg 0.85 0.83 0.84 231 Accuracy YOLO-only: 196/231 = 84.85% weighted avg 0.88 0.87 0.87 231 Accuracy YOLO+RF: 200/231 = 86.58%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | accuracy                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 0.87     | 231     |
| weighted avg 0.87 0.87 231  micro avg 0.88 0.87 0.87 231  macro avg 0.85 0.83 0.84 231 Accuracy YOLO-only: 196/231 = 84.85%  weighted avg 0.88 0.87 0.87 231 Accuracy YOLO+RF: 200/231 = 86.58%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |         |            | 1777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | macro avg                                | 0.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.84      | 0.83     | 231     |
| macro avg 0.85 0.83 0.84 231 Accuracy YOLO-only: 196/231 = 84.85% weighted avg 0.88 0.87 0.87 231 Accuracy YOLO+RF: 200/231 = 86.58%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | II asii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.50                           | 00      | - 0.33     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | weighted avg                             | 0.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.87      | 0.87     | 231     |
| macro avg 0.85 0.83 0.84 231 Accuracy YOLO-only: 196/231 = 84.85% weighted avg 0.88 0.87 0.87 231 Accuracy YOLO+RF: 200/231 = 86.58%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | micro ava                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.88                           | 0 87    | 0.87       | 231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E46                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |          | -       |
| weighted avg 0.88 0.87 0.87 231 Accuracy YOLO+RF: 200/231 = 86.58%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Accuracy YOLO-o                          | nly: 196/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 31 = 84.8 | 5%       |         |
| Accuracy YOLO+RF+PCA: 201/231 = 87.01%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |         |            | Accuracy YOLO+RF: 200/231 = 86.58%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | weighted avg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                | 0.07    | 0.07       | 231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Accuracy YOLO+R                          | F+PCA: 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | /231 = 87 | .01%     |         |

Fig. 15 Overview image of the model results of the garbage datasets (https://universe.roboflow.com/student-utr07/garbage-classifier-oehkt/dataset/27)

## 5.1. Causes of Improved Performance

Further analysis of the achieved results reveals that the superior performance of the proposed model stems from several key mechanisms and processing strategies, as detailed below:

#### 5.1.1. Handling Uncertain Prediction Areas with RF

In instances where the YOLOv10 model detects objects with low confidence (e.g., confidence scores falling within a predefined threshold window) or when minimal object overlap leads to ambiguity, the system preferentially employs the Random Forest algorithm to refine and re-determine the object's label, rather than relying solely on the initial YOLOv10 output. Specifically, for highly complex classes such as "Glass" and "Metal,"

where the standalone YOLOv10 model typically achieved low Precision (0.50 and 0.35, respectively), the integration of Random Forest-leveraging supplementary features like size, color, and deep characteristics—led to a substantial improvement in Precision to approximately 0.75 and 0.85, respectively. This enhancement culminated in a significant uplift in F1-scores for these classes.

## 5.1.2. Using PCA to Restore and Enhance Image Quality, the YOLOv10 Model can Recognize Objects that were Initially Missed

For images where YOLOv10 initially fails to detect any bounding boxes, an image recovery protocol is activated. The image is transformed into the feature space of its two principal components using Principal Component Analysis (PCA). Subsequently, the image is reconstructed and smoothed, incorporating histogram equalization to enhance contrast, before being re-submitted to the YOLOv10 model for a renewed detection attempt. This mechanism proved particularly effective for processing noisy or blurry images, thereby mitigating missed detections. For example, in the "Metal" class, this PCA-based recovery process facilitated the detection of an additional sample previously missed, elevating Precision to 0.88, Recall to 0.88, and the F1-score from a baseline of 0.75 (achieved by the YOLOv10+RF model without PCA) to 0.88.

## 5.1.3. A Variety of Combinations of Craftsmanship and Depth Characteristics

The model's performance is further augmented by the systematic combination of handcrafted features and deep learning features. Handcrafted features encompass geometric parameters such as width, height, aspect ratio, and average color values (e.g., mean BGR channel intensities). Deep features consist of high-dimensional vectors (e.g., approximately 1024 dimensions) extracted from the backbone of the YOLOv10 architecture. This synergistic feature fusion provides the Random Forest classifier with a richer and more discriminative information set regarding the characteristic shape and color of each object class. This is particularly advantageous in scenarios where the standalone YOLOv10 model might overlook subtle distinctions or confuse classes with similar macroscopic shapes (e.g., distinguishing between "Paper" and "Plastic").

## 5.1.4. Hyperparameter Optimization with StratifiedKFold

To ensure the generalizability and efficacy of the Random Forest model, its hyperparameters were meticulously optimized using the GridSearchCV method in conjunction with Stratified K-Fold cross-validation. This strategy ensures that the Random Forest model does not overfit to the majority classes within the dataset. Furthermore, it helps maintain a performance equilibrium between under-represented (low-sample) classes and well-represented (multi-sample) classes, thereby enhancing the model's reliability across all object categories.

## 5.2. Current Limitations

#### 5.2.1. Limited Dataset Scale

The dataset utilized in this study comprises approximately 1,200 images distributed across five to six object classes. A notable constraint is the under-representation of certain classes, such as "Metal," which consists of only a few dozen images. This data scarcity may restrict the learning capacity of the Random Forest (RF) model for these specific classes. Furthermore, dimensionality reduction via Principal Component Analysis (PCA), especially with limited per-class data, might lead to the loss of fine-grained color information that could be pertinent for optimal discrimination.

## 5.2.2. Detail Attenuation from PCA-based Image Reconstruction

While the PCA-based image recovery mechanism aids in increasing detection rates for instances initially missed by YOLOv10, the reconstruction process from a significantly reduced dimensionality (i.e., from only two principal components) inherently causes some information loss. This typically manifests as blurred object edges and reduced textural detail in the reconstructed image, potentially complicating the subsequent differentiation of objects from the background.

## 5.2.3. Suboptimal Feature Scaling Implementation

The current feature scaling approach, encapsulated in the rf\_predict\_with\_scaling function, selectively adjusts only the first two handcrafted features (width and height) using a set of fixed coefficients (e.g., [0.7, 1.0, 1.3]). The remaining features within the multi-dimensional feature space are not subjected to this scaling process. Consequently, the Random Forest classifier might not fully exploit the discriminative potential of the entire feature vector due to this partial and non-adaptive scaling strategy.

#### 5.2.4. Increased Computational Latency

The integration of Random Forest and PCA introduces additional computational overhead, leading to increased processing latency. Each bounding box falling within the predefined confidence window necessitates three separate executions of the RF model. Moreover, the PCA-based image recovery process, triggered as a fallback mechanism upon initial detection failure by YOLOv10, further contributes to the overall inference time. This cumulative latency may render the current pipeline unsuitable for applications with stringent real-time performance constraints.

#### 5.3. Future Development Direction

Future development directions for this research include several key areas. Firstly, scaling and balancing the data is crucial; this involves collecting more images for rare classes like metal and glass and applying advanced augmentation techniques such as GAN-based or photometric augmentation to provide the Random Forest (RF) model with more samples. Secondly, trying advanced ensemble methods is proposed, such as replacing Random Forest with XGBoost or LightGBM, which offer deeper learning and better handling of imbalances, and combining these with PCA as previously described. Another approach is to combine multiple models using stacking, for instance, a YOLO backbone with an MLP head for direct fine-tuning of a downstream classifier.

Thirdly, implementing dynamic confidence thresholding could optimize performance by learning the optimal confidence threshold for each class automatically, using methods like Bayesian optimization or meta-learning algorithms, rather than relying on predefined static thresholds. Fourthly, incorporating built-in attention-based pooling by replacing global-average pooling with attention pooling in the extract\_deep\_features process could make deep features more informative by weighting key Region of Interest (ROI) areas.

Fifthly, real-time optimization strategies are suggested, such as moving PCA and RF processes to GPUs using libraries like RAPIDS or converting RF to ONNX to reduce inference latency. Optimization could also involve applying RF/PCA selectively only on a small pool of very low-confidence boxes to minimize RF calls, or applying RF based on objects with specific area ratios that match the training data for RF, potentially reducing scans to one or two. Lastly, surveying other backbones, like EfficientNet or Swin Transformer, is recommended to potentially achieve higher quality deep feature extraction compared to the current YOLOv10.

#### 6. Conclusion

This study presents an effective hybrid approach combining YOLOv10's fast object detection with Random Forest's detailed feature-based classification, supported by PCA image enhancement. The proposed method significantly improves classification performance, especially for difficult classes with visually similar or challenging characteristics.

Future work should focus on:

- Expanding and balancing datasets: Collect more samples of underrepresented classes and apply advanced data augmentation techniques to improve model robustness.
- Exploring advanced ensemble methods: Investigate alternatives to Random Forest, such as XGBoost or LightGBM, for potentially better classification performance.

- Optimizing inference speed: Implement GPU acceleration for PCA and Random Forest, or convert models to ONNX to reduce latency.
- Dynamic confidence thresholds: Develop adaptive mechanisms to set class-specific thresholds for invoking Random Forest, improving prediction flexibility.
- Improving feature extraction: Incorporate attention mechanisms or explore other backbone architectures (e.g., EfficientNet, Swin Transformer) to obtain richer deep features.
- Real-world deployment considerations: Assess the system under different environmental conditions and hardware constraints to ensure practical applicability.

These findings confirm that:

- 1. Random Forest's feature-based correction can compensate for YOLOv10's weaknesses under suboptimal imaging conditions.
- 2. PCA + histogram equalization preprocessing significantly improves YOLOv10's localization accuracy, boosting the overall pipeline.
- 3. Practical applications: This pipeline is suitable for industrial sorting or recycling systems where high accuracy on challenging classes (glass, metal) is critical.

Overall, this research demonstrates that integrating deep learning with traditional machine learning and signal processing techniques can effectively enhance object classification systems, providing a foundation for future developments in automated waste sorting and related fields. Importantly, the proposed approach allows for flexibility depending on the specific requirements of the target application. For scenarios where objects are processed sequentially—such as on a conveyor belt in waste management facilities—the system's processing time per item remains practical, and the added accuracy from repeated Random Forest evaluation is highly valuable. Conversely, for applications requiring higher throughput or stricter real-time constraints, the inference pipeline can be further optimized by reducing the frequency or number of RF passes, or by triggering the secondary classifier only in rare, ambiguous cases. This flexibility makes the method adaptable to a broad range of real-world use cases, striking a suitable balance between robustness and efficiency.

## **Data Availability**

Researchers interested in accessing model implementations or CSV files containing extracted features (e.g., bounding box coordinates, dimensions, colors, assigned labels) can contact the corresponding author at luuminhtri17022001@gmail.com. Requests for data access will be approved for non-commercial research purposes upon reasonable request.

#### **Authors' Contributions**

- Luu Minh Tri: Methodology; Software; Investigation; Data Curation; Writing Original Draft; Visualization.
- Thinh Vo: Writing Review & Editing.
- Tuong Dang: Data Curation.
- Vuong Pham: Conceptualization; Supervision; Project Administration.
- Minh Phan: Methodology; Formal Analysis; Writing Review & Editing.

#### References

- [1] GeeksforGeeks, Random Forest Algorithm in Machine Learning, 2024. [Online]. Available: https://www.geeksforgeeks.org/random-forest-algorithm-in-machine-learning/
- [2] Mark Everingham et al., "The Pascal Visual Object Classes (VOC) Challenge," *International Journal of Computer Vision*, vol. 88, no. 2, pp. 303-338, 2010. [CrossRef] [Google Scholar] [Publisher Link]

- [3] Principal Component Analysis (PCA), GeeksforGeeks, 2025. [Online]. Available: https://www.geeksforgeeks.org/principal-component-analysis-pca/
- [4] Ankan Ghosh, YOLOv10: The Dual-Head OG of YOLO Series, 2024. [Online]. Available: https://learnopencv.com/yolov10/
- [5] Rafael Gonzalez, and Richard Woods, *Digital Image Processing*, 4th ed., Pearson, New York, 2017. [Google Scholar] [Publisher Link]
- [6] Histograms 2: Histogram Equalization, OpenCV Documentation, 2025. [Online]. Available: https://docs.opencv.org/4.x/d5/daf/tutorial\_py\_histogram\_equalization.html
- [7] P. Potrimba, What is YOLOv10? An Architecture Deep Dive, Roboflow Blog, 2024. [Online]. Available: https://blog.roboflow.com/what-is-yolov10/
- [8] GridSearchCV, Scikit-learn, 2025. [Online]. Available: https://scikit-learn.org/stable/modules/generated/sklearn.model\_selection.GridSearchCV.html
- [9] Principal Component Analysis (PCA), Scikit-learn, 2025. [Online]. Available: https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
- [10] StratifiedKFold, Scikit-learn, 2025. [Online]. Available: https://scikit-learn.org/stable/modules/generated/sklearn.model\_selection.StratifiedKFold.html
- [11] Yolov 10, Scribd, 2025. [Online]. Available: https://www.scribd.com/document/738483444/Yolov10
- [12] Ao Wang et al., "YOLOv10: Real-Time End-to-End Object Detection," arXiv Preprint, pp. 1-21, 2024. [CrossRef] [Google Scholar] [Publisher Link]
- [13] Matthew D. Zeiler, and Rob Fergus, "Visualizing and Understanding Convolutional Networks," *Computer Vision ECCV* 2014, Zurich, Switzerland, pp. 818-833, 2014. [CrossRef] [Google Scholar] [Publisher Link]
- [14] YOLOv10: Real-time Endpoint Object Recognition, Ultralytics, 2024. [Online]. Available: https://docs.ultralytics.com/vi/models/yolov10/