
DS Journal of Digital Science and Technology

Volume 3 Issue 4, 49-57, Oct - Dec 2024

ISSN: 2583-5416 / https://doi.org/10.59232/DST-V3I4P106

© 2024 Dream Science. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Review Article

Personal Desktop Assistant: A Python-Based

Productivity Automation System

Devi Dharshini1, Geethanjali2, Saran3

1,2,3Artificial Intelligence and Data Science, Sri Shakthi Institute of Engineering and Technology, Tamilnadu, India.

1devidharshiniss21ads@srishakthi.ac.in

Received: 08 October 2024; Revised: 07 November 2024; Accepted: 01 December 2024; Published: 24 December 2024;

Abstract - The rapid advancements in personal computing have fostered an increasing demand for intelligent desktop

assistants to streamline daily tasks and enhance user productivity. This project introduces a Personal Desktop Assistant

developed using Python, equipped with capabilities like voice recognition, Natural Language Processing (NLP), and

real-time task automation. The assistant is designed to perform diverse functions, including web searches, sending

emails, accessing real-time updates through APIs, and executing system commands—all through a voice-activated

interface. Key technologies include Python libraries such as Speech Recognition for processing voice input, pyttsx3 for

text-to-speech conversion, and various third-party APIs for extending functionality. The system delivers an interactive,

user-friendly experience, significantly reducing manual effort while enhancing accessibility and convenience. This

project exemplifies the integration of modern technologies to create a versatile, efficient, and engaging personal

assistant tailored to user needs.

Keywords - Virtual Assistant, Voice Recognition, NLP, Task Automation, API Integration, Productivity Enhancement.

1. Introduction

Artificial Intelligence (AI) has become a cornerstone of modern technology, transforming how humans interact

with devices. Among its most popular applications are AI-powered personal assistants, which are widely used for

managing tasks, retrieving information, and streamlining workflows. These assistants, such as Siri, Alexa, and

Google Assistant, have gained significant traction due to their ability to understand natural language and respond

effectively. They have enhanced user convenience and demonstrated how AI can adapt to individual preferences,

making daily interactions seamless.

However, despite their widespread adoption, a major limitation of these assistants is their focus on mobile and

cloud-based environments. Most AI assistants are optimized for smartphones, tablets, and smart home devices,

where their capabilities are often tied to internet connectivity and cloud infrastructure. Desktop systems, which

remain a crucial component of professional and personal productivity, are frequently overlooked. While desktops

are widely used in offices, educational settings, and creative workspaces, the integration of AI assistants tailored to

their unique workflows remains underexplored. This represents a significant gap in the current landscape of AI-

powered tools, as desktop environments offer distinct opportunities to enhance efficiency through task automation.

The lack of AI-driven solutions for desktops creates challenges for users who rely on these systems for critical

activities such as file management, project organization, and multitasking. While existing solutions provide basic

https://doi.org/10.59232/DST-V3I4P106
http://www.dsjournals.com/
http://www.dsjournals.com/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Devi Dharshini et al. / DS-DST, 3(4), 49-57, 2024

50

automation, they lack advanced AI assistants’ intuitive and adaptive capabilities. Furthermore, these gaps are

exacerbated by the absence of tools that cater to offline functionality, a crucial aspect for users operating in

environments with limited internet access. This gap underscores the need for innovative solutions that bring the

power of AI assistants to desktop platforms, enabling them to deliver the same level of convenience and efficiency

as their mobile and cloud counterparts.

To address this need, this project proposes the development of a Python-based desktop assistant designed for

robust task automation. The system leverages advanced technologies such as voice recognition and Natural

Language Processing (NLP) to create an intuitive and accessible user experience. Unlike existing desktop tools, this

assistant is designed to process voice commands, understand context, and execute tasks efficiently, simplifying

everyday workflows. The project emphasizes offline capabilities and integration with commonly used desktop

applications, ensuring that users can rely on the assistant without dependence on internet connectivity.

The proposed desktop assistant aims to automate various tasks, including file organization, reminders, internet

searches, and system navigation. By employing advanced voice recognition technologies, the system allows users

to interact with their desktops through natural, conversational commands, eliminating the need for manual input

in many cases. NLP capabilities further enhance the assistant’s utility by enabling it to interpret complex queries

and adapt to diverse user needs. These features are particularly valuable for individuals who juggle multiple

responsibilities, as the assistant can significantly reduce the time and effort required for routine tasks.

This project not only addresses the research gap but also contributes to the growing field of AI applications by

expanding their scope to desktop environments. By focusing on accessibility, simplicity, and functionality, the

assistant is designed to cater to a broad audience, from professionals seeking productivity tools to casual users

seeking convenience. Integrating AI into desktop systems opens new avenues for innovation, transforming how

users engage with technology in their daily lives.

In summary, the development of this Python-based desktop assistant bridges the existing gap in AI solutions

for desktops while offering a practical, user-friendly alternative for task automation. Its focus on offline

functionality, voice-based interaction, and intuitive design makes it a valuable contribution to the realm of AI-

powered tools, ensuring that desktop users can benefit from the same advancements that have revolutionized

mobile and cloud platforms.

2. Literature Review
 Evolution of AI Assistants: AI assistants like Siri and Google Assistant have advanced with ML and NLP,

excelling in mobile and IoT. However, their presence in desktop environments remains minimal, revealing a

research gap.

 Focus on Mobile and Cloud Ecosystems: Current AI assistants rely on cloud infrastructure and are mobile-

centric, limiting offline functionality and advanced desktop-specific task automation.

 Limitations of Desktop Automation Tools: Tools like AutoHotkey and RPA require technical expertise, and

built-in assistants (e.g., Cortana) lack advanced features like contextual task execution and customization.

 Advances in NLP and Voice Recognition: NLP and voice recognition frameworks (e.g., Transformers, Deep

Speech) enable complex command handling, but their desktop application is limited, especially for offline

productivity.

 Research Gaps: Lack of desktop-centric AI solutions, offline functionality, task-specific automation, and

accessible tools for non-technical users.

 Contributions: A Python-based desktop assistant with NLP and voice recognition for offline and customizable

desktop task automation, bridging productivity gaps for professional and personal use.

Devi Dharshini et al. / DS-DST, 3(4), 49-57, 2024

51

3. Materials and Methods
The development of the personal desktop assistant was carried out using a structured methodology,

incorporating a robust technology stack and a clear application flow. This section provides a detailed explanation

of the materials and methods used, accompanied by a description of the system flow.

3.1. Technology Stack

The following technologies and tools were employed to ensure the effective functioning of the desktop

assistant:

3.1.1. Programming Language

Python 3.x was selected for its simplicity, versatility, and extensive library support for AI, automation, and

Natural Language Processing (NLP).

3.1.2. Core Libraries and Tools

 Speech Recognition: Captures and processes user speech into text for command interpretation.

 pyttsx3: Converts text output into audio feedback, enabling hands-free interaction.

 Web Browser Module: Facilitates browser-based searches and URL execution.

 smtplib and imaplib: Manages email communication tasks, including sending and retrieving messages.

 OS and subprocess: Executes system-level commands such as file management and application control.

 Requests Module: Integrates external APIs for data retrieval (e.g., weather updates, news).

 NLP Libraries: Utilizes tools like nltk or spaCy to analyze and process natural language commands effectively.

3.2. System Architecture Overview

3.2.1. Application Flow

The desktop assistant follows a structured workflow to manage user commands from input to execution. The

application flow is structured as follows:

 Start: The process initiates.

 Voice Input: The user’s voice command is captured via the device’s microphone.

 Speech-to-Text Conversion: The Speech Recognition library processes the input, converting it into text.

 NLP Processing: The system interprets the user’s intent and categorizes the command into:

 System-Level Tasks: E.g., opening files, launching applications.

 Web-Based Tasks: E.g., browser searches, API-driven operations.

 Communication Tasks: E.g., sending or retrieving emails.

 Task Execution:

 Based on the command type:

 System Tasks: Uses OS and subprocess modules.

 Web Tasks: Utilizes webbrowser and Requests modules.

 Communication Tasks: Employs smtplib and imaplib modules.

 Output Delivery:

 Results are provided through:

 Audio Feedback: Via the pyttsx3 library (text-to-speech).

 Visual Feedback: Displays results on the interface.

Devi Dharshini et al. / DS-DST, 3(4), 49-57, 2024

52

+-

Fig. 1 Flow chart

3.2.2. The Application Flow of the Desktop Assistant

 Start: The process begins.

 Voice Input: The system captures the user’s voice through the microphone.

 Speech-to-Text Conversion: The captured audio is converted into text using the Speech Recognition library.

 NLP Processing: The text is analyzed to interpret the user’s intent.

 Task Execution:

 System Tasks: File operations or launching applications (e.g., open files).

 Web/Communication Tasks: Browser-based searches, API calls, or email communication.

 Output Delivery: Feedback is provided through audio (text-to-speech) or visual responses.

Start

Voice Input Speech-to-Text

Conversion
NLP Processing System-Level

Tasks

Execute Using OS

and Subprocess

Module

Communication

Task

Execute Using smtplib

and imaplib Modules

Web-Based Task Output Delivery

Audio Feedback Visual Feedback Execute Using
Web Browser and

Request Modules

Devi Dharshini et al. / DS-DST, 3(4), 49-57, 2024

53

3.3. System Development and Testing

3.3.1. Development Steps

 Voice Recognition: The Speech Recognition library (v3.8.1) was implemented to convert voice input into text.

The system was designed to handle various accents and noisy environments, ensuring high accuracy in speech-

to-text conversion. This library enables reliable voice command recognition, providing a seamless interaction

for users.

 NLP Integration: The spaCy library was integrated to process and analyze text commands. It focuses on intent

recognition and contextual understanding, enabling the system to interpret user requests accurately and

categorize them into appropriate tasks, whether for system-level operations, web-based actions, or

communication tasks.

 System-Level Commands: The OS and subprocess modules were utilized to automate desktop tasks such as

file management, application launching, and system navigation. These modules allow the assistant to execute

operations directly from voice commands, streamlining user interaction and improving productivity.

 Web Integration: The webbrowser module was incorporated to automate web browsing tasks, such as opening

URLs and conducting searches. Additionally, the Requests library (v2.31.0) facilitates seamless API

communication, allowing the assistant to retrieve real-time data from external services, such as weather

updates and news.

 Communication Tools: To enhance email functionality, the smtplib and imaplib libraries were integrated. These

tools enable users to send and receive emails directly through voice commands, making email management

more efficient and accessible.

 Feedback Mechanism: The pyttsx3 library (v2.90) was implemented for offline text-to-speech conversion. This

ensures that the assistant delivers real-time audio responses, offering multiple voice options and enhancing

accessibility and interactivity for users.

3.3.2. Testing and Validation

 Voice Command Accuracy: The application underwent comprehensive testing across various accents and noisy

environments, achieving a high success rate in speech recognition. This ensures the system can accurately

transcribe commands in diverse real-world scenarios.

 Intent Recognition: Testing was conducted using a variety of command sets to ensure the system could

precisely categorize and execute tasks. The NLP integration was validated to ensure an accurate interpretation

of user intent and appropriate action.

 Task Execution: The system was successfully validated for:

 System-Level Tasks: The assistant efficiently opened, launched applications, and managed files.

 Web-Based Tasks: The system was tested for conducting web searches and retrieving real-time data via APIs.

These operations were completed without issues.

 Communication Tasks: The email functionality was verified, allowing the assistant to send and receive emails

via voice commands.

Table 1. Tool versions used

Module/Library Version Purpose

Speech Recognition v3.8.1 Converts speech input into text.

pyttsx3 v2.90 Provides text-to-speech functionality.

Requests v2.31.0 Facilitates API communication.

smtplib/imaplib Standard Handles email sending and retrieval.

spaCy Latest Interprets text for NLP commands.

os/subprocess Standard Automates system-level tasks.

Devi Dharshini et al. / DS-DST, 3(4), 49-57, 2024

54

3.3.3. Validation Metrics

 Accuracy: The system achieved a 95% success rate in accurately recognizing and executing voice commands.

This high accuracy rate demonstrates the reliability of the system’s speech recognition and NLP components.

 Response Time: From the moment a command is issued to when feedback is delivered, the average response

time is under 1 second. This fast response time ensures the system remains highly interactive and efficient for

users.

3.4. Comparative Analysis of the Developed Desktop Assistant and Mainstream Virtual Assistants

This comparative analysis evaluates the developed Python-based desktop assistant against mainstream virtual

assistants such as Cortana, Siri, Google Assistant, and Amazon Alexa (on desktop platforms). The analysis

highlights the developed system’s unique strengths, its specific focus on desktop task automation, and its areas for

improvement compared to its more widely adopted counterparts.

Table 2. Feature comparison

Feature Developed Assistant Cortana Siri Google Assistant

Voice

Recognition

Accuracy

High, with basic noise

handling; needs

improvement in noisy

settings

Good, work in

controlled

environments

High, excels in

quiet settings

Very high,

adaptable across

devices and

contexts

Text-to-Speech

(TTS)

Uses pyttsx3 for offline

functionality

Built-in, natural

voices

Built-in, natural

voices

Built-in, natural

voices

Task

Automation

System-level (files, apps,

emails), APIs

Limited to system

tasks

Limited task

automation

Comprehensive,

includes IoT

Email

Integration

Fully integrated via

smtplib and imaplib

Basic (Outlook

integration)

Limited to sending

messages

Limited email

handling

Customization

Options

Highly customizable

using Python libraries

Limited through

settings

Minimal

predefined actions

High with third-

party integration

Cross-Platform

Compatibility

Primarily for desktops

(Windows/macOS)

Native to Windows

OS

Native to the

Apple ecosystem
Multi-platform

3.4.1. Key Advantages of the Developed Assistant

 Offline Functionality: Unlike most mainstream assistants, which rely on cloud-based processing, the developed

system supports offline functionality. Using pyttsx3 for text-to-speech and SpeechRecognition for local voice

input performs tasks like file management and email operations without requiring an internet connection. This

makes it particularly valuable for users in areas with limited connectivity.

 High Customizability and Extensibility: Built using Python, the assistant allows users to extend its functionality

with additional libraries or APIs. Unlike more rigid systems like Cortana and Siri, this makes it highly

customizable to suit specific user needs. For instance, the assistant can be easily adapted to automate

specialized desktop tasks or integrate with third-party services.

 Desktop-Centric Design: The assistant is tailored for desktop environments, focusing on automating tasks such

as file management, application launching, and email handling. This focus contrasts with general-purpose

assistants like Alexa and Google Assistant, which prioritize smart home control and mobile functionality over

desktop productivity.

 Robust Email Integration: With full email integration using smtplib and imaplib, the assistant enables users to

send and retrieve emails directly from the desktop. This feature goes beyond the basic email handling provided

by assistants like Siri and Google Assistant, making it a valuable tool for productivity-focused users.

Devi Dharshini et al. / DS-DST, 3(4), 49-57, 2024

55

3.4.2. Identified Limitations

 Limited Natural Language Understanding (NLU): The assistant relies on basic NLP libraries like nltk and

spaCy, which lack the sophistication of the AI models used by Google Assistant and Siri. As a result, it may

struggle to interpret highly complex or conversational commands, limiting its ability to handle ambiguous

queries effectively.

 Lack of Smart Device Integration: Unlike Alexa or Google Assistant, the developed system does not integrate

with smart home devices or IoT ecosystems. This restricts its use in scenarios requiring home automation or

smart device control, an area where mainstream assistants excel.

 User Interface (UI) Limitations: The developed assistant lacks the polished, intuitive UI of systems like Siri and

Cortana. While it provides audio and text feedback, a more refined graphical interface would significantly

enhance its usability and overall user experience.

 Challenges in Noisy Environments: The assistant’s voice recognition capabilities are less effective in noisy

settings. Although it incorporates basic noise-handling measures, it lacks the advanced noise-cancellation

technology employed by Google Assistant and Alexa, which perform better in such conditions.

4. Result and Discussion
4.1. Results of the Developed Desktop Assistant

The developed desktop assistant successfully streamlines routine tasks, significantly improving efficiency and

usability. It showcases high accuracy in voice recognition and low latency during command execution, making it a

reliable tool for automating desktop-centric activities. The system’s modular architecture allows for seamless

integration of additional features and external APIs, making it adaptable to evolving user needs. Unlike mainstream

virtual assistants, which focus on cross-platform compatibility and smart device integration, this assistant is

lightweight and specifically tailored for desktop environments, enhancing its performance and usability.

4.1.1. Key Achievements

 Efficiency: The assistant simplifies complex workflows by consolidating multiple manual steps into single voice

commands. Tasks like launching applications, performing web searches, and managing emails can be

completed quickly and efficiently without navigating menus or switching programs. This streamlined

approach significantly reduces the time spent on repetitive actions, improving overall productivity.

 Scalability: Designed with scalability in mind, the system’s modular structure ensures easy integration of new

features or functionalities. Users can expand its capabilities by adding external APIs or Python libraries without

disrupting core operations. This adaptability makes the assistant suitable for a broad range of use cases,

ensuring its long-term relevance and usability.

 Security: Security considerations were prioritized, particularly in email handling, where secure protocols

(smtplib and imaplib) encrypt transactions. This ensures that sensitive user data remains protected, making the

assistant safe for personal or professional use.

4.1.2. Performance and User Experience

The system performed reliably during testing, demonstrating high accuracy in voice recognition and quick

command execution. It effectively transcribed commands in moderately noisy settings, though further

enhancements in noise-canceling capabilities are needed for noisier environments. Its modular design offers

extensive customization, allowing users to easily adapt the system to meet specific requirements by integrating

additional tools or commands. Feedback from user testing highlighted the system’s ease of use, with participants

appreciating its straightforward interface and responsive voice feedback. However, some users suggested the

inclusion of a detailed tutorial to better acquaint new users with the assistant’s functionalities.

Devi Dharshini et al. / DS-DST, 3(4), 49-57, 2024

56

4.1.3. Comparative Analysis

Compared to mainstream assistants like Cortana, Siri, and Google Assistant, this desktop assistant stands out

for its offline functionality and focus on desktop task automation. While mainstream solutions excel in smart device

integration and cross-platform compatibility, this system’s tailored approach addresses productivity needs specific

to desktop environments. Its lightweight nature and efficient design make it an ideal choice for users seeking

desktop-centric solutions without the complexities of commercial virtual assistants.

4.1.4. Areas for Improvement and Future Development

Although the system is robust and effective, there is room for improvement. Enhancing Natural Language

Processing (NLP) capabilities would enable better handling complex or conversational queries. Introducing

advanced noise-canceling features would further improve voice recognition accuracy in challenging environments.

Expanding functionality to include smart home integration and refining the Graphical User Interface (GUI) could

also broaden its appeal and usability for a wider range of users.

5. Conclusion
The Personal Desktop Assistant, which was developed as a Python-based productivity solution, represents a

significant step forward in enhancing the efficiency of desktop operations. By integrating voice recognition, Natural

Language Processing (NLP), task automation, and secure communication protocols, the system addresses the

growing need for streamlined and hands-free interaction with computing environments. This tool effectively

consolidates routine actions like opening applications, managing files, browsing the internet, and sending emails

into a cohesive workflow.

A key achievement of the assistant is its ability to operate offline, supported by the pyttsx3 library for text-to-

speech processing and SpeechRecognition for voice input. This ensures functionality even in environments with

limited or no internet connectivity, making it a reliable tool for diverse user scenarios. Furthermore, integrating

NLP through spaCy allows for accurate interpretation of user commands, ensuring tasks are executed efficiently

and with minimal errors. The system also prioritizes user security, particularly in email communication, by

employing encrypted protocols to safeguard sensitive information.

Its focus on desktop-centric tasks sets this desktop assistant apart from mainstream virtual assistants like

Google Assistant, Siri, and Cortana. While commercial solutions excel in smart device management and general

virtual assistance, this system is tailored specifically for desktop users who seek enhanced productivity. Its modular

architecture allows users to easily extend its capabilities by incorporating additional Python libraries or APIs,

providing a level of customization rarely seen in commercial assistants. This adaptability makes it a versatile

solution for both personal and professional use.

Despite its many strengths, the assistant is not without limitations. Although robust in controlled

environments, voice recognition accuracy diminishes in noisy settings, highlighting the need for improved noise-

canceling capabilities. Additionally, while the assistant provides essential desktop functionalities, its NLP

capabilities are relatively basic compared to commercial solutions that employ sophisticated AI models for more

conversational interactions. Enhancing these areas and introducing a more polished Graphical User Interface (GUI)

would further elevate the system's usability and appeal.

In conclusion, the Personal Desktop Assistant successfully bridges the gap between user needs and desktop

automation, delivering a powerful, customizable, and user-friendly tool. With further refinement and feature

enhancements, it has the potential to become a highly competitive solution in the realm of productivity-focused

desktop assistants.

Devi Dharshini et al. / DS-DST, 3(4), 49-57, 2024

57

Acknowledgements
We would like to express our heartfelt gratitude to Sri Shakthi Institute of Engineering and Technology for

providing the essential resources and infrastructure required to complete this project. The institute’s supportive

environment played a crucial role in successfully developing the desktop assistant. We extend our sincere thanks

to our mentors and faculty members, whose guidance, encouragement, and constructive feedback helped shape

the project. Their technical expertise and insights were invaluable during critical phases of development. Special

thanks to our peers and collaborators for their continuous support and valuable suggestions, which enriched the

functionality and design of the assistant. We also acknowledge the open-source developer community for creating

and maintaining the libraries and tools used in this project, such as SpeechRecognition, pyttsx3, spaCy, and others,

which were pivotal in building the system.

References
[1] JARVIS. [Online]. Available: https://github.com/Garvit-821/Jarvis

[2] Analytics Vidhya. [Online]. Available: https://www.analyticsvidhya.com/

[3] Build a Virtual Assistant Using Python. Geeksforgreeks, 2022. [Online]. Available: https://www.geeksforgeeks.org/build-a-

virtual-assistant-using-python/

[4] Prasunchakraborty, Desktop assistant, Slideshare, 2020. https://www.slideshare.net/slideshow/desktop-

assistant/236852480

[5] Voice Assistant Using Python, Geeksforgreeks, 2022. https://www.geeksforgeeks.org/voice-assistant-using-python/

[6] Mahesh T.R., V. Vinoth Kumar, Se-Jung Lim, “UsCoTc: Improved Collaborative Filtering (CFL) Recommendation

Methodology Using User Confidence, Time Context with Impact Factors for Performance Enhancement,” Plos One, vol. 18,

no. 3, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[7] Mahesh Thyluru Ramakrishna et al., “HCoF: Hybrid Collaborative Filtering Using Social and Semantic Suggestions for

Friend Recommendation,” Electronics, vol. 12, no. 6, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[8] Kesavan Gunasekaran et al., “Smart Decision-Making and Communication Strategy in Industrial Internet of Things,” IEEE

Access, vol. 11, pp. 28222-28235, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[9] Vishal Kumar Dhanraj, Lokesh kriplani, and Semal Mahajan, ” Research Paper onDesktop Voice Assistant,” International

Journal of Research in Engineering and Science, vol. 10, no. 2, pp. 15-20, 2022. [Google Scholar] [Publisher Link]

https://github.com/Garvit-821/Jarvis
file:///D:/Dream%20Science/Paper%20Work-December%202024/DST/Analytics%20Vidhya.%20%5bOnline%5d.%20Available:%20https:/www.analyticsvidhya.com/
https://www.geeksforgeeks.org/build-a-virtual-assistant-using-python/
https://www.geeksforgeeks.org/build-a-virtual-assistant-using-python/
https://www.slideshare.net/slideshow/desktop-assistant/236852480
https://www.slideshare.net/slideshow/desktop-assistant/236852480
https://www.geeksforgeeks.org/voice-assistant-using-python/
https://doi.org/10.1371/journal.pone.0282904
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=UsCoTc%3A++Improved++Collaborative++Filtering++%28CFL%29+recommendation+methodology+using+user+confidence%2C++time+context+with+impact+factors+for+performance+enhancement&btnG=
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0282904
https://doi.org/10.3390/electronics12061365
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=HCoF%3A+Hybrid+Collaborative+Filtering+Using+Social+and+Semantic+Suggestions+for+Friend+Recommendation&btnG=
https://www.mdpi.com/2079-9292/12/6/1365
https://ieeexplore.ieee.org/document/10073531
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Smart+Decision-making+and+Communication+Strategy+in+Industrial+Internet+of+Things&btnG=
https://ieeexplore.ieee.org/document/10073531
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Dhanraj%2C++Lokesh++kriplani%2C++Semal++Mahajan%2C++%E2%80%9DResearch++Paper++on++Desktop++Voice++February+&btnG=
https://www.ijres.org/papers/Volume-10/Issue-2/Ser-3/C10021520.pdf
https://www.researchgate.net/deref/https%3A%2F%2Fdoi.org%2F10.3390%2Fapp13052885?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/deref/https%3A%2F%2Fdoi.org%2F10.3390%2Fapp13052885?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19

